Zhuo Zhao, Rui Li, Yangmyung Ma, Iman Islam, Abdul M Azam Rajper, WenZhan Song, Hongliang Ren, Zion Tsz Ho Tse
{"title":"Supporting Technologies for COVID-19 Prevention: Systemized Review.","authors":"Zhuo Zhao, Rui Li, Yangmyung Ma, Iman Islam, Abdul M Azam Rajper, WenZhan Song, Hongliang Ren, Zion Tsz Ho Tse","doi":"10.2196/30344","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During COVID-19, clinical and health care demands have been on the rapid rise. Major challenges that have arisen during the pandemic have included a lack of testing kits, shortages of ventilators to treat severe cases of COVID-19, and insufficient accessibility to personal protective equipment for both hospitals and the public. New technologies have been developed by scientists, researchers, and companies in response to these demands.</p><p><strong>Objective: </strong>The primary objective of this review is to compare different supporting technologies in the subjugation of the COVID-19 spread.</p><p><strong>Methods: </strong>In this paper, 150 news articles and scientific reports on COVID-19-related innovations during 2020-2021 were checked, screened, and shortlisted to yield a total of 23 articles for review. The keywords \"COVID-19 technology,\" \"COVID-19 invention,\" and \"COVID-19 equipment\" were used in a Google search to generate related news articles and scientific reports. The search was performed on February 1, 2021. These were then categorized into three sections, which are personal protective equipment (PPE), testing methods, and medical treatments. Each study was analyzed for its engineering characteristics and potential social impact on the COVID-19 pandemic.</p><p><strong>Results: </strong>A total of 9 articles were selected for review concerning PPE. In general, the design and fabrication of PPE were moving toward the direction of additive manufacturing and intelligent information feedback while being eco-friendly. Moreover, 8 articles were selected for reviewing testing methods within the two main categories of molecular and antigen tests. All the inventions endeavored to increase sensitivity while reducing the turnaround time. However, the inventions reported in this review paper were not sufficiently tested for their safety and efficiency. Most of the inventions are temporary solutions intended to be used only during shortages of medical resources. Finally, 6 articles were selected for the review of COVID-19 medical treatment. The major challenge identified was the uncertainty in applying novel ideas to speed up the production of ventilators.</p><p><strong>Conclusions: </strong>The technologies developed during the COVID-19 pandemic were considered for review. In order to better respond to future pandemics, national reserves of critical medical supplies should be increased to improve preparation. This pandemic has also highlighted the need for the automation and optimization of medical manufacturing.</p>","PeriodicalId":73558,"journal":{"name":"JMIRx med","volume":"3 2","pages":"e30344"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIRx med","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/30344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: During COVID-19, clinical and health care demands have been on the rapid rise. Major challenges that have arisen during the pandemic have included a lack of testing kits, shortages of ventilators to treat severe cases of COVID-19, and insufficient accessibility to personal protective equipment for both hospitals and the public. New technologies have been developed by scientists, researchers, and companies in response to these demands.
Objective: The primary objective of this review is to compare different supporting technologies in the subjugation of the COVID-19 spread.
Methods: In this paper, 150 news articles and scientific reports on COVID-19-related innovations during 2020-2021 were checked, screened, and shortlisted to yield a total of 23 articles for review. The keywords "COVID-19 technology," "COVID-19 invention," and "COVID-19 equipment" were used in a Google search to generate related news articles and scientific reports. The search was performed on February 1, 2021. These were then categorized into three sections, which are personal protective equipment (PPE), testing methods, and medical treatments. Each study was analyzed for its engineering characteristics and potential social impact on the COVID-19 pandemic.
Results: A total of 9 articles were selected for review concerning PPE. In general, the design and fabrication of PPE were moving toward the direction of additive manufacturing and intelligent information feedback while being eco-friendly. Moreover, 8 articles were selected for reviewing testing methods within the two main categories of molecular and antigen tests. All the inventions endeavored to increase sensitivity while reducing the turnaround time. However, the inventions reported in this review paper were not sufficiently tested for their safety and efficiency. Most of the inventions are temporary solutions intended to be used only during shortages of medical resources. Finally, 6 articles were selected for the review of COVID-19 medical treatment. The major challenge identified was the uncertainty in applying novel ideas to speed up the production of ventilators.
Conclusions: The technologies developed during the COVID-19 pandemic were considered for review. In order to better respond to future pandemics, national reserves of critical medical supplies should be increased to improve preparation. This pandemic has also highlighted the need for the automation and optimization of medical manufacturing.