Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions.

Future healthcare journal Pub Date : 2024-09-03 eCollection Date: 2024-09-01 DOI:10.1016/j.fhj.2024.100182
Renganathan Senthil, Thirunavukarasou Anand, Chaitanya Sree Somala, Konda Mani Saravanan
{"title":"Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions.","authors":"Renganathan Senthil, Thirunavukarasou Anand, Chaitanya Sree Somala, Konda Mani Saravanan","doi":"10.1016/j.fhj.2024.100182","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The presence of artificial intelligence (AI) in healthcare is a powerful and game-changing force that is completely transforming the industry as a whole. Using sophisticated algorithms and data analytics, AI has unparalleled prospects for improving patient care, streamlining operational efficiency, and fostering innovation across the healthcare ecosystem. This study conducts a comprehensive bibliometric analysis of research on AI in healthcare, utilising the SCOPUS database as the primary data source.</p><p><strong>Methods: </strong>Preliminary findings from 2013 identified 153 publications on AI and healthcare. Between 2019 and 2023, the number of publications increased exponentially, indicating significant growth and development in the field. The analysis employs various bibliometric indicators to assess research production performance, science mapping techniques, and thematic mapping analysis.</p><p><strong>Results: </strong>The study reveals insights into research hotspots, thematic focus, and emerging trends in AI and healthcare research. Based on an extensive examination of the Scopus database provides a brief overview and suggests potential avenues for further investigation.</p><p><strong>Conclusion: </strong>This article provides valuable contributions to understanding the current landscape of AI in healthcare, offering insights for future research directions and informing strategic decision making in the field.</p>","PeriodicalId":73125,"journal":{"name":"Future healthcare journal","volume":"11 3","pages":"100182"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future healthcare journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.fhj.2024.100182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The presence of artificial intelligence (AI) in healthcare is a powerful and game-changing force that is completely transforming the industry as a whole. Using sophisticated algorithms and data analytics, AI has unparalleled prospects for improving patient care, streamlining operational efficiency, and fostering innovation across the healthcare ecosystem. This study conducts a comprehensive bibliometric analysis of research on AI in healthcare, utilising the SCOPUS database as the primary data source.

Methods: Preliminary findings from 2013 identified 153 publications on AI and healthcare. Between 2019 and 2023, the number of publications increased exponentially, indicating significant growth and development in the field. The analysis employs various bibliometric indicators to assess research production performance, science mapping techniques, and thematic mapping analysis.

Results: The study reveals insights into research hotspots, thematic focus, and emerging trends in AI and healthcare research. Based on an extensive examination of the Scopus database provides a brief overview and suggests potential avenues for further investigation.

Conclusion: This article provides valuable contributions to understanding the current landscape of AI in healthcare, offering insights for future research directions and informing strategic decision making in the field.

人工智能在医疗保健研究中的文献计量分析:趋势与未来方向。
目的:人工智能(AI)在医疗保健领域的出现是一股强大的、改变游戏规则的力量,正在彻底改变整个行业。利用复杂的算法和数据分析,人工智能在改善患者护理、提高运营效率以及促进整个医疗生态系统的创新方面有着无可比拟的前景。本研究利用 SCOPUS 数据库作为主要数据来源,对医疗保健领域的人工智能研究进行了全面的文献计量分析:方法:2013 年的初步研究结果确定了 153 篇有关人工智能和医疗保健的出版物。2019年至2023年期间,出版物数量呈指数增长,表明该领域有了显著的增长和发展。分析采用了各种文献计量指标来评估研究生产绩效、科学制图技术和专题制图分析:研究揭示了人工智能和医疗保健研究的研究热点、主题重点和新兴趋势。基于对 Scopus 数据库的广泛研究,该研究提供了简要概述,并提出了进一步调查的潜在途径:本文为了解人工智能在医疗保健领域的现状做出了宝贵贡献,为未来的研究方向提供了见解,并为该领域的战略决策提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信