Nonparametric Subcluster Detection in Large Hyperspaces.

Contact in context Pub Date : 2023-01-01
James T Isaacs, Philip J Almeter, Bradley S Henderson, Aaron N Hunter, Thomas L Platt, Robert A Lodder
{"title":"Nonparametric Subcluster Detection in Large Hyperspaces.","authors":"James T Isaacs, Philip J Almeter, Bradley S Henderson, Aaron N Hunter, Thomas L Platt, Robert A Lodder","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This assessment of subcluster detection in analytical chemistry offers a nonparametric approach to address the challenges of identifying specific substances (molecules or mixtures) in large hyperspaces. The paper introduces the concept of subcluster detection, which involves identifying specific substances within a larger cluster of similar samples. The BEST (Bootstrap Error-adjusted Single-sample Technique) metric is introduced as a more accurate and precise method for discriminating between similar samples compared to the MD (Mahalanobis distance) metric. The paper also discusses the challenges of subcluster detection in large hyperspaces, such as the curse of dimensionality and the need for nonparametric methods. The proposed nonparametric approach involves using a kernel density estimator to determine the probability density function of the data and then using a quantile-quantile algorithm to identify subclusters. The paper provides examples of how this approach can be used to analyze small changes in the near-infrared spectra of drug samples and identifies the benefits of this approach, such as improved accuracy and precision.</p>","PeriodicalId":72698,"journal":{"name":"Contact in context","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact in context","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This assessment of subcluster detection in analytical chemistry offers a nonparametric approach to address the challenges of identifying specific substances (molecules or mixtures) in large hyperspaces. The paper introduces the concept of subcluster detection, which involves identifying specific substances within a larger cluster of similar samples. The BEST (Bootstrap Error-adjusted Single-sample Technique) metric is introduced as a more accurate and precise method for discriminating between similar samples compared to the MD (Mahalanobis distance) metric. The paper also discusses the challenges of subcluster detection in large hyperspaces, such as the curse of dimensionality and the need for nonparametric methods. The proposed nonparametric approach involves using a kernel density estimator to determine the probability density function of the data and then using a quantile-quantile algorithm to identify subclusters. The paper provides examples of how this approach can be used to analyze small changes in the near-infrared spectra of drug samples and identifies the benefits of this approach, such as improved accuracy and precision.

大超空间中的非参数子集群检测
本文对分析化学中的亚簇检测进行了评估,为解决在大型超空间中识别特定物质(分子或混合物)的难题提供了一种非参数方法。论文介绍了亚簇检测的概念,即在一个更大的相似样本簇中识别特定物质。与 MD(Mahalanobis 距离)指标相比,BEST(Bootstrap Error-adjusted Single-sample Technique,引导误差调整单样本技术)指标是一种更准确、更精确的类似样本区分方法。论文还讨论了在大型超空间中进行子簇检测所面临的挑战,如维度诅咒和对非参数方法的需求。所提出的非参数方法包括使用核密度估算器来确定数据的概率密度函数,然后使用量化-量化算法来识别子集群。论文举例说明了这种方法如何用于分析药物样本近红外光谱的微小变化,并指出了这种方法的优点,如提高准确度和精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信