A novel method for 12-lead ECG reconstruction.

Dorsa EPMoghaddam, Anton Banta, Allison Post, Mehdi Razavi, Behnaam Aazhang
{"title":"A novel method for 12-lead ECG reconstruction.","authors":"Dorsa EPMoghaddam, Anton Banta, Allison Post, Mehdi Razavi, Behnaam Aazhang","doi":"10.1109/ieeeconf59524.2023.10476822","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel approach to synthesize a standard 12-lead electrocardiogram (ECG) from any three independent ECG leads using a patient-specific encoder-decoder convolutional neural network. The objective is to decrease the number of recording locations required to obtain the same information as a 12-lead ECG, thereby enhancing patients' comfort during the recording process. We evaluate the proposed algorithm on a dataset comprising fifteen patients, as well as a randomly selected cohort of patients from the PTB diagnostic database. To evaluate the precision of the reconstructed ECG signals, we present two metrics: the correlation coefficient and root mean square error. Our proposed method achieves superior performance compared to most existing synthesis techniques, with an average correlation coefficient of 0.976 and 0.97 for datasets, respectively. These results demonstrate the potential of our approach to improve the efficiency and comfort of ECG recording for patients, while maintaining high diagnostic accuracy.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2023 ","pages":"1054-1058"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieeeconf59524.2023.10476822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to synthesize a standard 12-lead electrocardiogram (ECG) from any three independent ECG leads using a patient-specific encoder-decoder convolutional neural network. The objective is to decrease the number of recording locations required to obtain the same information as a 12-lead ECG, thereby enhancing patients' comfort during the recording process. We evaluate the proposed algorithm on a dataset comprising fifteen patients, as well as a randomly selected cohort of patients from the PTB diagnostic database. To evaluate the precision of the reconstructed ECG signals, we present two metrics: the correlation coefficient and root mean square error. Our proposed method achieves superior performance compared to most existing synthesis techniques, with an average correlation coefficient of 0.976 and 0.97 for datasets, respectively. These results demonstrate the potential of our approach to improve the efficiency and comfort of ECG recording for patients, while maintaining high diagnostic accuracy.

12 导联心电图重建新方法
本文提出了一种新颖的方法,利用患者特定的编码器-解码器卷积神经网络,从任意三个独立的心电图导联合成标准的 12 导联心电图(ECG)。目的是减少获得与 12 导联心电图相同信息所需的记录位置数量,从而提高患者在记录过程中的舒适度。我们在由 15 名患者组成的数据集以及从 PTB 诊断数据库中随机抽取的一组患者中对所提出的算法进行了评估。为了评估重建心电信号的精确度,我们提出了两个指标:相关系数和均方根误差。与大多数现有的合成技术相比,我们提出的方法性能更优越,数据集的平均相关系数分别为 0.976 和 0.97。这些结果表明,我们的方法有潜力提高患者心电图记录的效率和舒适度,同时保持较高的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信