Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2024-09-19 eCollection Date: 2024-01-01 DOI:10.34133/bdr.0049
Filippo Liguori, Nicola Pellicciotta, Edoardo Milanetti, Sophia Xi Windemuth, Giancarlo Ruocco, Roberto Di Leonardo, Tal Danino
{"title":"Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy.","authors":"Filippo Liguori, Nicola Pellicciotta, Edoardo Milanetti, Sophia Xi Windemuth, Giancarlo Ruocco, Roberto Di Leonardo, Tal Danino","doi":"10.34133/bdr.0049","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered bacteria have the potential to deliver therapeutic payloads directly to tumors, with synthetic biology enabling precise control over therapeutic release in space and time. However, it remains unclear how to optimize therapeutic bacteria for durable colonization and sustained payload release. Here, we characterize nonpathogenic <i>Escherichia coli</i> expressing the bacterial toxin Perfringolysin O (PFO) and dynamic strategies that optimize therapeutic efficacy. While PFO is known for its potent cancer cell cytotoxicity, we present experimental evidence that expression of PFO causes lysis of bacteria in both batch culture and microfluidic systems, facilitating its efficient release. However, prolonged expression of PFO leads to the emergence of a mutant population that limits therapeutic-releasing bacteria in a PFO expression level-dependent manner. We present sequencing data revealing the mutant takeover and employ molecular dynamics to confirm that the observed mutations inhibit the lysis efficiency of PFO. To analyze this further, we developed a mathematical model describing the evolution of therapeutic-releasing and mutant bacteria populations revealing trade-offs between therapeutic load delivered and fraction of mutants that arise. We demonstrate that a dynamic strategy employing short and repeated inductions of the <i>pfo</i> gene better preserves the original population of therapeutic bacteria by mitigating the effects of mutational escape. Altogether, we demonstrate how dynamic modulation of gene expression can address mutant takeovers giving rise to limitations in engineered bacteria for therapeutic applications.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered bacteria have the potential to deliver therapeutic payloads directly to tumors, with synthetic biology enabling precise control over therapeutic release in space and time. However, it remains unclear how to optimize therapeutic bacteria for durable colonization and sustained payload release. Here, we characterize nonpathogenic Escherichia coli expressing the bacterial toxin Perfringolysin O (PFO) and dynamic strategies that optimize therapeutic efficacy. While PFO is known for its potent cancer cell cytotoxicity, we present experimental evidence that expression of PFO causes lysis of bacteria in both batch culture and microfluidic systems, facilitating its efficient release. However, prolonged expression of PFO leads to the emergence of a mutant population that limits therapeutic-releasing bacteria in a PFO expression level-dependent manner. We present sequencing data revealing the mutant takeover and employ molecular dynamics to confirm that the observed mutations inhibit the lysis efficiency of PFO. To analyze this further, we developed a mathematical model describing the evolution of therapeutic-releasing and mutant bacteria populations revealing trade-offs between therapeutic load delivered and fraction of mutants that arise. We demonstrate that a dynamic strategy employing short and repeated inductions of the pfo gene better preserves the original population of therapeutic bacteria by mitigating the effects of mutational escape. Altogether, we demonstrate how dynamic modulation of gene expression can address mutant takeovers giving rise to limitations in engineered bacteria for therapeutic applications.

动态基因表达可减轻溶解驱动型细菌癌症疗法中的突变逃逸。
工程细菌具有直接向肿瘤输送治疗载荷的潜力,合成生物学可精确控制治疗载荷在空间和时间上的释放。然而,目前仍不清楚如何优化治疗细菌以实现持久定殖和持续有效载荷释放。在这里,我们描述了表达细菌毒素 Perfringolysin O(PFO)的非致病性大肠杆菌的特征,以及优化疗效的动态策略。虽然 PFO 以其强大的癌细胞毒性而闻名,但我们提出的实验证据表明,在批量培养和微流体系统中,PFO 的表达会导致细菌裂解,从而促进其有效释放。然而,PFO 的长期表达会导致突变种群的出现,这种突变种群会以依赖 PFO 表达水平的方式限制治疗释放细菌。我们提供了揭示突变体接管的测序数据,并利用分子动力学证实观察到的突变抑制了 PFO 的裂解效率。为了进一步分析这一现象,我们建立了一个数学模型,描述了治疗释放细菌和突变细菌种群的演变过程,揭示了治疗负荷与突变体产生比例之间的权衡。我们证明,采用短时间重复诱导 pfo 基因的动态策略可以减轻突变逃逸的影响,从而更好地保留原始的治疗细菌群体。总之,我们展示了基因表达的动态调控如何解决突变体接管导致治疗用工程细菌受限的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信