Subin Lee, Hyeonwook Kim, Jaehyeon Byeon, Seongbo Shim, Hyun-Joo Lee, Jaesung Hong
{"title":"Flexible endoscope manipulating robot using quad-roller friction mechanism.","authors":"Subin Lee, Hyeonwook Kim, Jaehyeon Byeon, Seongbo Shim, Hyun-Joo Lee, Jaesung Hong","doi":"10.1080/24699322.2024.2404695","DOIUrl":null,"url":null,"abstract":"<p><p>A robotic system for manipulating a flexible endoscope in surgery can provide enhanced accuracy and usability compared to manual operation. However, previous studies require large-scale, complex hardware systems to implement the rotational and translational motions of the soft endoscope cable. The conventional control of the endoscope by actuating the endoscope handle also leads to undesired slack between the endoscope tip and the handle, which becomes more problematic with long endoscopes such as a colonoscope. This study proposes a compact quad-roller friction mechanism that enables rotational and translational motions triggered not from the endoscope handle but at the endoscope tip. Controlling two pairs of tilted rollers achieves both types of motion within a small space. The proposed system also introduces an unsynchronized motion strategy between the handle and tip parts to minimize the robot's motion near the patient by employing the slack positively as a control index. Experiments indicate that the proposed system achieves accurate rotational and translational motions, and the unsynchronized control method reduces the total translational motion by up to 88% compared to the previous method.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2024.2404695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
A robotic system for manipulating a flexible endoscope in surgery can provide enhanced accuracy and usability compared to manual operation. However, previous studies require large-scale, complex hardware systems to implement the rotational and translational motions of the soft endoscope cable. The conventional control of the endoscope by actuating the endoscope handle also leads to undesired slack between the endoscope tip and the handle, which becomes more problematic with long endoscopes such as a colonoscope. This study proposes a compact quad-roller friction mechanism that enables rotational and translational motions triggered not from the endoscope handle but at the endoscope tip. Controlling two pairs of tilted rollers achieves both types of motion within a small space. The proposed system also introduces an unsynchronized motion strategy between the handle and tip parts to minimize the robot's motion near the patient by employing the slack positively as a control index. Experiments indicate that the proposed system achieves accurate rotational and translational motions, and the unsynchronized control method reduces the total translational motion by up to 88% compared to the previous method.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.