Use of the EmsB microsatellite-based next generation sequencing for genotyping of Echinococcus granulosus sensu lato in hydatid cyst tissue samples from animals and humans.
{"title":"Use of the EmsB microsatellite-based next generation sequencing for genotyping of Echinococcus granulosus sensu lato in hydatid cyst tissue samples from animals and humans.","authors":"Suheir Ereqat, Amer Al-Jawabreh, Hanan Al-Jawabreh, Abedelmajeed Nasereddin","doi":"10.14411/fp.2024.014","DOIUrl":null,"url":null,"abstract":"<p><p>Echinococcus granulosus (Batsch, 1786), a cestode of the Teniidae family, causes human cystic echinococcosis (CE) also known as hydatid disease. Echinococcus granulosus sensu lato includes the G1, G3, G4, G5, G6/7 and G8/10 genotypes which are known to cause human CE. This study aimed to differentiate genotypes of E. granulosus s.l. complex by employing EmsB, a tandemly repeated multilocus microsatellite, using next-generation sequencing (MIC-NGS). Human and animal histopathology-confirmed hydatid cyst tissue samples and reference DNA samples of E. granulosus G1, G3, G4, G5, G6/7 and G10 underwent MIC-NGS assay with custom primers amplifying a 151 bp EmsB DNA fragment. NGS data were analysed using online Galaxy analysis pipeline, a phylogenetic tree was constructed by MEGA software, and haplotype networking was performed with PopArt 1.7. All sixty samples (49 from animals and 11 from humans) included were successfully identified and genotyped with a 100 % success rate. The study showed improved discrimination power to distinguish all study samples including closely related E. granulosus s.s. genotypes G1-G3. The maximum likelihood tree reaffirmed the monophyly of E. granulosus s.l. The median-joining haplotype networking revealed 12 distinct haplotypes. In conclusion, MIC-NGS assay was shown to be sensitive, specific and simple to apply to clinical samples offering a powerful discriminatory tool for the genotyping of E. granulosus s.l.</p>","PeriodicalId":55154,"journal":{"name":"Folia Parasitologica","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Parasitologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14411/fp.2024.014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Echinococcus granulosus (Batsch, 1786), a cestode of the Teniidae family, causes human cystic echinococcosis (CE) also known as hydatid disease. Echinococcus granulosus sensu lato includes the G1, G3, G4, G5, G6/7 and G8/10 genotypes which are known to cause human CE. This study aimed to differentiate genotypes of E. granulosus s.l. complex by employing EmsB, a tandemly repeated multilocus microsatellite, using next-generation sequencing (MIC-NGS). Human and animal histopathology-confirmed hydatid cyst tissue samples and reference DNA samples of E. granulosus G1, G3, G4, G5, G6/7 and G10 underwent MIC-NGS assay with custom primers amplifying a 151 bp EmsB DNA fragment. NGS data were analysed using online Galaxy analysis pipeline, a phylogenetic tree was constructed by MEGA software, and haplotype networking was performed with PopArt 1.7. All sixty samples (49 from animals and 11 from humans) included were successfully identified and genotyped with a 100 % success rate. The study showed improved discrimination power to distinguish all study samples including closely related E. granulosus s.s. genotypes G1-G3. The maximum likelihood tree reaffirmed the monophyly of E. granulosus s.l. The median-joining haplotype networking revealed 12 distinct haplotypes. In conclusion, MIC-NGS assay was shown to be sensitive, specific and simple to apply to clinical samples offering a powerful discriminatory tool for the genotyping of E. granulosus s.l.
期刊介绍:
FOLIA PARASITOLOGICA, issued in online versions, is an international journal that covers the whole field of general, systematic, ecological and experimental parasitology. It publishes original research papers, research notes and review articles. Contributions from all branches of animal parasitology, such as morphology, taxonomy, biology, biochemistry, physiology, immunology, molecular biology and evolution of parasites, and host-parasite relationships, are eligible. Novelty and importance in the international (not local or regional) context are required. New geographical records of parasites, records of new hosts, regional parasite and/or host surveys (if they constitute the principal substance of manuscript), local/regional prevalence surveys of diseases, local/regional studies on epidemiology of well known diseases and of parasite impact on human/animal health, case reports, routine clinical studies and testing of established diagnostic or treatment procedures, will not be considered. One species description will also not be considered unless they include more general information, such as new diagnostic characters, host-parasite associations, phylogenetic implications, etc. Manuscripts found suitable on submission will be reviewed by at least two reviewers.