{"title":"Jasmonic acid plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.","authors":"Jiahao Li, Guolong Yu, Xinyuan Wang, Chaocheng Guo, Yudong Wang, Xu Wang","doi":"10.1016/j.xplc.2024.101133","DOIUrl":null,"url":null,"abstract":"<p><p>Proper mitochondrial function is crucial to plant growth and development. Inhibition of mitochondrial translation leads to mitochondrial proteotoxic stress, which triggers a protective transcriptional response that regulates nuclear gene expression, commonly referred to as the mitochondrial unfolded protein response (UPR<sup>mt</sup>). Although the UPR<sup>mt</sup> has been extensively studied in yeast and mammals, very little is known about the UPR<sup>mt</sup> in plants. Here, we show that mitochondrial translational stress inhibits plant growth and development by inducing jasmonic acid (JA) biosynthesis and signaling. The inhibitory effect of mitochondrial translational stress on plant growth was alleviated in the JA-signaling-defective mutants coi1-2, myc2, and myc234. Genetic analysis indicated that Arabidopsis mitochondrial ribosomal protein L1 (MRPL1), a key factor in the UPR<sup>mt</sup>, regulates plant growth in a CORONATINE-INSENSITIVE 1 (COI1)-dependent manner. Moreover, under mitochondrial translational stress, MYC2 shows direct binding to G boxes in the ETHYLENE RESPONSE FACTOR 109 (ERF109) promoter. The induction of ERF109 expression enhances hydrogen peroxide production, which acts as a feedback loop to inhibit root growth. In addition, mutation of MRPL1 increases JA accumulation, reduces plant growth, and enhances biotic stress resistance. Overall, our findings reveal that JA plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101133","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proper mitochondrial function is crucial to plant growth and development. Inhibition of mitochondrial translation leads to mitochondrial proteotoxic stress, which triggers a protective transcriptional response that regulates nuclear gene expression, commonly referred to as the mitochondrial unfolded protein response (UPRmt). Although the UPRmt has been extensively studied in yeast and mammals, very little is known about the UPRmt in plants. Here, we show that mitochondrial translational stress inhibits plant growth and development by inducing jasmonic acid (JA) biosynthesis and signaling. The inhibitory effect of mitochondrial translational stress on plant growth was alleviated in the JA-signaling-defective mutants coi1-2, myc2, and myc234. Genetic analysis indicated that Arabidopsis mitochondrial ribosomal protein L1 (MRPL1), a key factor in the UPRmt, regulates plant growth in a CORONATINE-INSENSITIVE 1 (COI1)-dependent manner. Moreover, under mitochondrial translational stress, MYC2 shows direct binding to G boxes in the ETHYLENE RESPONSE FACTOR 109 (ERF109) promoter. The induction of ERF109 expression enhances hydrogen peroxide production, which acts as a feedback loop to inhibit root growth. In addition, mutation of MRPL1 increases JA accumulation, reduces plant growth, and enhances biotic stress resistance. Overall, our findings reveal that JA plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.