Robotic navigation with deep reinforcement learning in transthoracic echocardiography.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Yuuki Shida, Souto Kumagai, Hiroyasu Iwata
{"title":"Robotic navigation with deep reinforcement learning in transthoracic echocardiography.","authors":"Yuuki Shida, Souto Kumagai, Hiroyasu Iwata","doi":"10.1007/s11548-024-03275-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.</p><p><strong>Method: </strong>The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.</p><p><strong>Results: </strong>The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.</p><p><strong>Conclusion: </strong>The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03275-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The search for heart components in robotic transthoracic echocardiography is a time-consuming process. This paper proposes an optimized robotic navigation system for heart components using deep reinforcement learning to achieve an efficient and effective search technique for heart components.

Method: The proposed method introduces (i) an optimized search behavior generation algorithm that avoids multiple local solutions and searches for the optimal solution and (ii) an optimized path generation algorithm that minimizes the search path, thereby realizing short search times.

Results: The mitral valve search with the proposed method reaches the optimal solution with a probability of 74.4%, the mitral valve confidence loss rate when the local solution stops is 16.3% on average, and the inspection time with the generated path is 48.6 s on average, which is 56.6% of the time cost of the conventional method.

Conclusion: The results indicate that the proposed method improves the search efficiency, and the optimal location can be searched in many cases with the proposed method, and the loss rate of the confidence in the mitral valve was low even when a local solution rather than the optimal solution was reached. It is suggested that the proposed method enables accurate and quick robotic navigation to find heart components.

经胸超声心动图中的深度强化学习机器人导航。
目的:在机器人经胸超声心动图中搜索心脏部件是一个耗时的过程。本文提出了一种优化的心脏部件机器人导航系统,利用深度强化学习实现高效的心脏部件搜索技术:方法:所提出的方法引入了(i)优化搜索行为生成算法,该算法可避免多个局部解并搜索最优解;(ii)优化路径生成算法,该算法可使搜索路径最小化,从而实现较短的搜索时间:结果:采用所提方法的二尖瓣搜索达到最优解的概率为 74.4%,局部解停止时的二尖瓣置信度损失率平均为 16.3%,生成路径的检查时间平均为 48.6 s,是传统方法时间成本的 56.6%:结果表明,所提出的方法提高了搜索效率,在很多情况下都能搜索到最佳位置,而且即使达到的是局部解而不是最优解,二尖瓣的置信度损失率也很低。建议采用所提出的方法实现准确、快速的机器人导航,以寻找心脏部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信