Variable Selection Using Bayesian Additive Regression Trees.

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY
Statistical Science Pub Date : 2024-05-01 Epub Date: 2024-05-05 DOI:10.1214/23-sts900
Chuji Luo, Michael J Daniels
{"title":"Variable Selection Using Bayesian Additive Regression Trees.","authors":"Chuji Luo, Michael J Daniels","doi":"10.1214/23-sts900","DOIUrl":null,"url":null,"abstract":"<p><p>Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-sts900","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.

使用贝叶斯加性回归树进行变量选择。
变量选择是一个重要的统计问题。当候选预测因子为混合类型(如连续和二元),并以非线性和/或非加性方式影响响应变量时,这一问题就变得更具挑战性。在本文中,我们回顾了贝叶斯加性回归树(BART)模型的现有变量选择方法,该模型是一种非参数回归模型,具有足够的灵活性来捕捉预测因子之间的交互作用以及与响应的非线性关系。本综述的重点在于识别相关预测因子的能力。我们还提出了两种变量重要性测量方法,可用于基于置换的变量选择方法和 BART 的后向变量选择程序。我们介绍这些变式是为了说明当前方法的局限性和改进机会,并通过模拟对这些变式进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信