A clinical decision support system for diagnosis and severity quantification of lumbosacral radiculopathy using intramuscular electromyography signals.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Farshid Hamtaei Pour Shirazi, Hossein Parsaei, Alireza Ashraf
{"title":"A clinical decision support system for diagnosis and severity quantification of lumbosacral radiculopathy using intramuscular electromyography signals.","authors":"Farshid Hamtaei Pour Shirazi, Hossein Parsaei, Alireza Ashraf","doi":"10.1007/s11517-024-03196-8","DOIUrl":null,"url":null,"abstract":"<p><p>Interpreting intramuscular electromyography (iEMG) signals for diagnosing and quantifying the severity of lumbosacral radiculopathy is challenging due to the subjective evaluation of signals. To address this limitation, a clinical decision support system (CDSS) was developed for the diagnosis and quantification of the severity of lumbosacral radiculopathy based on intramuscular electromyography (iEMG) signals. The CDSS uses the EMG interference pattern method (QEMG IP) to directly extract features from the iEMG signal and provide a quantitative expression of injury severity for each muscle and overall radiculopathy severity. From 126 time and frequency domain features, a set of five features, including the crest factor, mean absolute value, peak frequency, zero crossing count, and intensity, were selected. These features were derived from raw iEMG signals, empirical mode decomposition, and discrete wavelet transform, and the wrapper method was utilized to determine the most significant features. The CDSS was trained and tested on a dataset of 75 patients, achieving an accuracy of 93.3%, sensitivity of 93.3%, and specificity of 96.6%. The system shows promise in assisting physicians in diagnosing lumbosacral radiculopathy with high accuracy and consistency using iEMG data. The CDSS's objective and standardized diagnostic process, along with its potential to reduce the time and effort required by physicians to interpret EMG signals, makes it a potentially valuable tool for clinicians in the diagnosis and management of lumbosacral radiculopathy. Future work should focus on validating the system's performance in diverse clinical settings and patient populations.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03196-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Interpreting intramuscular electromyography (iEMG) signals for diagnosing and quantifying the severity of lumbosacral radiculopathy is challenging due to the subjective evaluation of signals. To address this limitation, a clinical decision support system (CDSS) was developed for the diagnosis and quantification of the severity of lumbosacral radiculopathy based on intramuscular electromyography (iEMG) signals. The CDSS uses the EMG interference pattern method (QEMG IP) to directly extract features from the iEMG signal and provide a quantitative expression of injury severity for each muscle and overall radiculopathy severity. From 126 time and frequency domain features, a set of five features, including the crest factor, mean absolute value, peak frequency, zero crossing count, and intensity, were selected. These features were derived from raw iEMG signals, empirical mode decomposition, and discrete wavelet transform, and the wrapper method was utilized to determine the most significant features. The CDSS was trained and tested on a dataset of 75 patients, achieving an accuracy of 93.3%, sensitivity of 93.3%, and specificity of 96.6%. The system shows promise in assisting physicians in diagnosing lumbosacral radiculopathy with high accuracy and consistency using iEMG data. The CDSS's objective and standardized diagnostic process, along with its potential to reduce the time and effort required by physicians to interpret EMG signals, makes it a potentially valuable tool for clinicians in the diagnosis and management of lumbosacral radiculopathy. Future work should focus on validating the system's performance in diverse clinical settings and patient populations.

利用肌内肌电图信号诊断和量化腰骶神经根病严重程度的临床决策支持系统。
由于对信号的主观评价,解释肌内肌电图(iEMG)信号以诊断和量化腰骶神经根病的严重程度具有挑战性。为了解决这一局限性,我们开发了一种临床决策支持系统(CDSS),用于根据肌内肌电图(iEMG)信号诊断和量化腰骶椎根病的严重程度。CDSS 使用肌电图干扰模式法(QEMG IP)直接从 iEMG 信号中提取特征,并对每块肌肉的损伤严重程度和总体根性神经病的严重程度进行量化表达。从 126 个时域和频域特征中,选择了一组五个特征,包括波峰因数、平均绝对值、峰值频率、过零计数和强度。这些特征来自原始 iEMG 信号、经验模式分解和离散小波变换,并利用包装方法确定最重要的特征。CDSS 在 75 名患者的数据集上进行了训练和测试,准确率达到 93.3%,灵敏度达到 93.3%,特异性达到 96.6%。该系统有望协助医生利用 iEMG 数据诊断腰骶部神经根病,准确性和一致性都很高。CDSS 的客观和标准化诊断过程,以及其减少医生解释 EMG 信号所需的时间和精力的潜力,使其成为临床医生诊断和管理腰骶神经根病的一个潜在的有价值的工具。未来的工作重点应放在验证该系统在不同临床环境和患者群体中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信