{"title":"Uncovering nonequilibrium from unresolved events.","authors":"Pedro E Harunari","doi":"10.1103/PhysRevE.110.024122","DOIUrl":null,"url":null,"abstract":"<p><p>Closely related to the laws of thermodynamics, the detection and quantification of disequilibria are crucial in unraveling the complexities of nature, particularly those beneath observable layers. Theoretical developments in nonequilibrium thermodynamics employ coarse-graining methods to consider a diversity of partial information scenarios that mimic experimental limitations, allowing the inference of properties such as the entropy production rate. A ubiquitous but rather unexplored scenario involves observing events that can possibly arise from many transitions in the underlying Markov process-which we dub multifilar events-as in the cases of exchanges measured at particle reservoirs, hidden Markov models, mixed chemical and mechanical transformations in biological function, composite systems, and more. We relax one of the main assumptions in a previously developed framework, based on first-passage problems, to assess the non-Markovian statistics of multifilar events. By using the asymmetry of event distributions and their waiting times, we put forward model-free tools to detect nonequilibrium behavior and estimate entropy production, while discussing their suitability for different classes of systems and regimes where they provide no new information, evidence of nonequilibrium, a lower bound for entropy production, or even its exact value. The results are illustrated in reference models through analytics and numerics.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.024122","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Closely related to the laws of thermodynamics, the detection and quantification of disequilibria are crucial in unraveling the complexities of nature, particularly those beneath observable layers. Theoretical developments in nonequilibrium thermodynamics employ coarse-graining methods to consider a diversity of partial information scenarios that mimic experimental limitations, allowing the inference of properties such as the entropy production rate. A ubiquitous but rather unexplored scenario involves observing events that can possibly arise from many transitions in the underlying Markov process-which we dub multifilar events-as in the cases of exchanges measured at particle reservoirs, hidden Markov models, mixed chemical and mechanical transformations in biological function, composite systems, and more. We relax one of the main assumptions in a previously developed framework, based on first-passage problems, to assess the non-Markovian statistics of multifilar events. By using the asymmetry of event distributions and their waiting times, we put forward model-free tools to detect nonequilibrium behavior and estimate entropy production, while discussing their suitability for different classes of systems and regimes where they provide no new information, evidence of nonequilibrium, a lower bound for entropy production, or even its exact value. The results are illustrated in reference models through analytics and numerics.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.