Hediye Yarahmadi, Yves Desille, John Goold, Francesca Pietracaprina
{"title":"Identifying vegetation patterns for a qualitative assessment of land degradation using a cellular automata model and satellite imagery.","authors":"Hediye Yarahmadi, Yves Desille, John Goold, Francesca Pietracaprina","doi":"10.1103/PhysRevE.110.024136","DOIUrl":null,"url":null,"abstract":"<p><p>We aim to identify the spatial distribution of vegetation and its growth dynamics with the purpose of obtaining a qualitative assessment of vegetation characteristics tied to its condition, productivity and health, and to land degradation. To do so, we compare a statistical model of vegetation growth and land surface imagery derived vegetation indices. Specifically, we analyze a stochastic cellular automata model and data obtained from satellite images, namely using the normalized difference vegetation index and the leaf area index. In the experimental data, we look for areas where vegetation is broken into small patches and qualitatively compare it to the percolating, fragmented, and degraded states that appear in the cellular automata model. We model the periodic effect of seasons, finding numerical evidence of a periodic fragmentation and recovery phenomenology if the model parameters are sufficiently close to the model's percolation transition. We qualitatively recognize these effects in real-world vegetation images and consider them a signal of increased environmental stress and vulnerability. Finally, we show an estimation of the environmental stress in land images by considering both the vegetation density and its clusterization.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.024136","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We aim to identify the spatial distribution of vegetation and its growth dynamics with the purpose of obtaining a qualitative assessment of vegetation characteristics tied to its condition, productivity and health, and to land degradation. To do so, we compare a statistical model of vegetation growth and land surface imagery derived vegetation indices. Specifically, we analyze a stochastic cellular automata model and data obtained from satellite images, namely using the normalized difference vegetation index and the leaf area index. In the experimental data, we look for areas where vegetation is broken into small patches and qualitatively compare it to the percolating, fragmented, and degraded states that appear in the cellular automata model. We model the periodic effect of seasons, finding numerical evidence of a periodic fragmentation and recovery phenomenology if the model parameters are sufficiently close to the model's percolation transition. We qualitatively recognize these effects in real-world vegetation images and consider them a signal of increased environmental stress and vulnerability. Finally, we show an estimation of the environmental stress in land images by considering both the vegetation density and its clusterization.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.