Phase reduction explains chimera shape: When multibody interaction matters.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Erik T K Mau, Oleh E Omel'chenko, Michael Rosenblum
{"title":"Phase reduction explains chimera shape: When multibody interaction matters.","authors":"Erik T K Mau, Oleh E Omel'chenko, Michael Rosenblum","doi":"10.1103/PhysRevE.110.L022201","DOIUrl":null,"url":null,"abstract":"<p><p>We present an extension of the Kuramoto-Sakaguchi model for networks, deriving the second-order phase approximation for a paradigmatic model of oscillatory networks-an ensemble of nonidentical Stuart-Landau oscillators coupled pairwisely via an arbitrary coupling matrix. We explicitly demonstrate how this matrix translates into the coupling structure in the phase equations. To illustrate the power of our approach and the crucial importance of high-order phase reduction, we tackle a trendy setup of nonlocally coupled oscillators exhibiting a chimera state. We reveal that our second-order phase model reproduces the dependence of the chimera shape on the coupling strength that is not captured by the typically used first-order Kuramoto-like model. Our derivation contributes to a better understanding of complex networks' dynamics, establishing a relation between the coupling matrix and multibody interaction terms in the high-order phase model.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.L022201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an extension of the Kuramoto-Sakaguchi model for networks, deriving the second-order phase approximation for a paradigmatic model of oscillatory networks-an ensemble of nonidentical Stuart-Landau oscillators coupled pairwisely via an arbitrary coupling matrix. We explicitly demonstrate how this matrix translates into the coupling structure in the phase equations. To illustrate the power of our approach and the crucial importance of high-order phase reduction, we tackle a trendy setup of nonlocally coupled oscillators exhibiting a chimera state. We reveal that our second-order phase model reproduces the dependence of the chimera shape on the coupling strength that is not captured by the typically used first-order Kuramoto-like model. Our derivation contributes to a better understanding of complex networks' dynamics, establishing a relation between the coupling matrix and multibody interaction terms in the high-order phase model.

相减解释了嵌合体的形状:当多体相互作用变得重要时
我们介绍了 Kuramoto-Sakaguchi 网络模型的扩展,推导出振荡网络典型模型--通过任意耦合矩阵成对耦合的非相同斯图尔特-朗道振荡器集合--的二阶相位近似。我们明确演示了该矩阵如何转化为相位方程中的耦合结构。为了说明我们方法的威力和高阶相位还原的关键重要性,我们处理了非局部耦合振荡器的新潮设置,展示了一种嵌合态。我们发现,我们的二阶相位模型再现了嵌合体形状对耦合强度的依赖性,而通常使用的一阶库拉莫托类模型却无法捕捉到这种依赖性。我们的推导有助于更好地理解复杂网络的动力学,在高阶相位模型中建立了耦合矩阵和多体相互作用项之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信