Erik T K Mau, Oleh E Omel'chenko, Michael Rosenblum
{"title":"Phase reduction explains chimera shape: When multibody interaction matters.","authors":"Erik T K Mau, Oleh E Omel'chenko, Michael Rosenblum","doi":"10.1103/PhysRevE.110.L022201","DOIUrl":null,"url":null,"abstract":"<p><p>We present an extension of the Kuramoto-Sakaguchi model for networks, deriving the second-order phase approximation for a paradigmatic model of oscillatory networks-an ensemble of nonidentical Stuart-Landau oscillators coupled pairwisely via an arbitrary coupling matrix. We explicitly demonstrate how this matrix translates into the coupling structure in the phase equations. To illustrate the power of our approach and the crucial importance of high-order phase reduction, we tackle a trendy setup of nonlocally coupled oscillators exhibiting a chimera state. We reveal that our second-order phase model reproduces the dependence of the chimera shape on the coupling strength that is not captured by the typically used first-order Kuramoto-like model. Our derivation contributes to a better understanding of complex networks' dynamics, establishing a relation between the coupling matrix and multibody interaction terms in the high-order phase model.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.L022201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We present an extension of the Kuramoto-Sakaguchi model for networks, deriving the second-order phase approximation for a paradigmatic model of oscillatory networks-an ensemble of nonidentical Stuart-Landau oscillators coupled pairwisely via an arbitrary coupling matrix. We explicitly demonstrate how this matrix translates into the coupling structure in the phase equations. To illustrate the power of our approach and the crucial importance of high-order phase reduction, we tackle a trendy setup of nonlocally coupled oscillators exhibiting a chimera state. We reveal that our second-order phase model reproduces the dependence of the chimera shape on the coupling strength that is not captured by the typically used first-order Kuramoto-like model. Our derivation contributes to a better understanding of complex networks' dynamics, establishing a relation between the coupling matrix and multibody interaction terms in the high-order phase model.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.