Remotely actuated programmable self-folding origami strings using magnetic induction heating.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2024-08-30 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1443379
Quentin Lahondes, Shuhei Miyashita
{"title":"Remotely actuated programmable self-folding origami strings using magnetic induction heating.","authors":"Quentin Lahondes, Shuhei Miyashita","doi":"10.3389/frobt.2024.1443379","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming planar structures into volumetric objects typically requires manual folding processes, akin to origami. However, manual intervention at sub-centimeter scales is impractical. Instead, folding is achieved using volume-changing smart materials that respond to physical or chemical stimuli, be it with direct contact such as hydration, pH, or remotely e.g., light or magnetism. The complexity of small-scale structures often restricts the variety of smart materials used and the number of folding sequences. In this study, we propose a method to sequentially self-fold millimeter scale origami using magnetic induction heating at <math><mn>150</mn></math> kHz and 3.2 mT. Additionally, we introduce a method for designing self-folding overhand knots and predicting the folding sequence using the magneto-thermal model we developed. This methodology is demonstrated to sequentially self-fold by optimizing the surface, placement, and geometry of metal workpieces, and is validated through the self-folding of various structures, including a 380 <math> <msup><mrow><mi>m</mi> <mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </math> croissant, a <math><mn>321</mn></math> mm<sup>2</sup> box, a <math><mn>447</mn></math> mm<sup>2</sup> bio-mimetic Mimosa pudica leaf, and an overhand knot covering <math><mn>524</mn></math> mm<sup>2</sup>. Our work shows significant potential for miniature self-folding origami robots owing to the novel sequential folding approach and the ability to achieve remote and tetherless self-folding within constrained environments.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1443379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming planar structures into volumetric objects typically requires manual folding processes, akin to origami. However, manual intervention at sub-centimeter scales is impractical. Instead, folding is achieved using volume-changing smart materials that respond to physical or chemical stimuli, be it with direct contact such as hydration, pH, or remotely e.g., light or magnetism. The complexity of small-scale structures often restricts the variety of smart materials used and the number of folding sequences. In this study, we propose a method to sequentially self-fold millimeter scale origami using magnetic induction heating at 150 kHz and 3.2 mT. Additionally, we introduce a method for designing self-folding overhand knots and predicting the folding sequence using the magneto-thermal model we developed. This methodology is demonstrated to sequentially self-fold by optimizing the surface, placement, and geometry of metal workpieces, and is validated through the self-folding of various structures, including a 380 m m 2 croissant, a 321 mm2 box, a 447 mm2 bio-mimetic Mimosa pudica leaf, and an overhand knot covering 524 mm2. Our work shows significant potential for miniature self-folding origami robots owing to the novel sequential folding approach and the ability to achieve remote and tetherless self-folding within constrained environments.

利用磁感应加热远程驱动可编程自折折纸线。
将平面结构转化为体积物体通常需要类似折纸的手工折叠过程。然而,在亚厘米尺度上进行人工干预是不切实际的。取而代之的是使用可改变体积的智能材料来实现折叠,这些材料可对物理或化学刺激做出反应,无论是直接接触(如水合、pH 值)还是远程(如光或磁)。小尺度结构的复杂性往往限制了所用智能材料的种类和折叠序列的数量。在这项研究中,我们提出了一种利用 150 kHz 和 3.2 mT 的磁感应加热来按顺序自折毫米级折纸的方法。此外,我们还介绍了一种设计自折双手结的方法,并利用我们开发的磁热模型预测折叠顺序。通过优化金属工件的表面、位置和几何形状,该方法被证明可以按顺序进行自折叠,并通过各种结构的自折叠进行了验证,包括一个 380 m m 2 的羊角面包、一个 321 mm2 的盒子、一个 447 mm2 的生物仿真含羞草叶和一个 524 mm2 的覆手结。我们的工作显示了微型自折折纸机器人的巨大潜力,因为它采用了新颖的顺序折叠方法,并能在受限环境中实现远程无系自折。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信