A Hybrid Markov-SPC Approach to Assess Cost Differences in Urgent Care Utilization Using Patient-Reported Data in Inflammatory Bowel Disease.

Q2 Social Sciences
The Permanente journal Pub Date : 2024-09-16 Epub Date: 2024-09-10 DOI:10.7812/TPP/24.024
Brant J Oliver, Gil Y Melmed, Corey A Siegel, Alice M Kennedy, James Testaverde, Ridhima Oberai, S Alandra Weaver, Christopher Almario
{"title":"A Hybrid Markov-SPC Approach to Assess Cost Differences in Urgent Care Utilization Using Patient-Reported Data in Inflammatory Bowel Disease.","authors":"Brant J Oliver, Gil Y Melmed, Corey A Siegel, Alice M Kennedy, James Testaverde, Ridhima Oberai, S Alandra Weaver, Christopher Almario","doi":"10.7812/TPP/24.024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cost is a key outcome in quality and value, but it is often difficult to estimate reliably and efficiently for use in real-time improvement efforts. We describe a method using patient-reported outcomes (PROs), Markov modeling, and statistical process control (SPC) analytics in a real-time cost-estimation prototype designed to assess cost differences between usual care and improvement conditions in a national multicenter improvement collaborative-the IBD Qorus Learning Health System (LHS).</p><p><strong>Methods: </strong>The IBD Qorus Learning Health System (LHS) collects PRO data, including emergency department utilization and hospitalizations from patients prior to their clinical visits. This data is aggregated monthly at center and collaborative levels, visualized using Statistical Process Control (SPC) analytics, and used to inform improvement efforts. A Markov model was developed by Almario et al to estimate annualized per patient cost differences between usual care (baseline) and improvement (intervention) time periods and then replicated at monthly intervals. We then applied moving average SPC analyses to visualize monthly iterative cost estimations and assess the variation and statistical reliability of these estimates over time.</p><p><strong>Results: </strong>We have developed a real-time Markov-informed SPC visualization prototype which uses PRO data to analyze and monitor monthly annualized per patient cost savings estimations over time for the IBD Qorus LHS. Validation of this prototype using claims data is currently underway.</p><p><strong>Conclusion: </strong>This new approach using PRO data and hybrid Markov-SPC analysis can analyze and visualize near real-time estimates of cost differences over time. Pending successful validation against a claims data standard, this approach could more comprehensively inform improvement, advocacy, and strategic planning efforts.</p>","PeriodicalId":23037,"journal":{"name":"The Permanente journal","volume":"28 3","pages":"234-244"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Permanente journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7812/TPP/24.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cost is a key outcome in quality and value, but it is often difficult to estimate reliably and efficiently for use in real-time improvement efforts. We describe a method using patient-reported outcomes (PROs), Markov modeling, and statistical process control (SPC) analytics in a real-time cost-estimation prototype designed to assess cost differences between usual care and improvement conditions in a national multicenter improvement collaborative-the IBD Qorus Learning Health System (LHS).

Methods: The IBD Qorus Learning Health System (LHS) collects PRO data, including emergency department utilization and hospitalizations from patients prior to their clinical visits. This data is aggregated monthly at center and collaborative levels, visualized using Statistical Process Control (SPC) analytics, and used to inform improvement efforts. A Markov model was developed by Almario et al to estimate annualized per patient cost differences between usual care (baseline) and improvement (intervention) time periods and then replicated at monthly intervals. We then applied moving average SPC analyses to visualize monthly iterative cost estimations and assess the variation and statistical reliability of these estimates over time.

Results: We have developed a real-time Markov-informed SPC visualization prototype which uses PRO data to analyze and monitor monthly annualized per patient cost savings estimations over time for the IBD Qorus LHS. Validation of this prototype using claims data is currently underway.

Conclusion: This new approach using PRO data and hybrid Markov-SPC analysis can analyze and visualize near real-time estimates of cost differences over time. Pending successful validation against a claims data standard, this approach could more comprehensively inform improvement, advocacy, and strategic planning efforts.

利用炎症性肠病患者报告数据评估急诊护理使用成本差异的混合马尔可夫-SPC 方法。
背景:成本是质量和价值的一个关键结果,但在实时改进工作中往往难以可靠有效地估算成本。我们介绍了一种在实时成本估算原型中使用患者报告结果 (PRO)、马尔可夫模型和统计过程控制 (SPC) 分析的方法,该原型旨在评估国家多中心改进合作项目 IBD Qorus 学习健康系统 (LHS) 中常规护理和改进条件之间的成本差异:方法:IBD Qorus 学习健康系统(LHS)收集 PRO 数据,包括患者在临床就诊前的急诊使用情况和住院情况。这些数据按月在中心和协作级别汇总,使用统计过程控制(SPC)分析进行可视化,并用于为改进工作提供信息。Almario 等人开发了一个马尔可夫模型,用于估算常规护理(基线)和改进(干预)时间段内每位患者的年化成本差异,然后以月为间隔进行复制。然后,我们采用移动平均 SPC 分析法对每月迭代成本估算结果进行可视化,并评估这些估算结果随时间的变化和统计可靠性:我们开发了一个实时马尔可夫信息SPC可视化原型,该原型使用PRO数据分析和监控IBD Qorus LHS的每月每名患者年化成本节约估算。目前正在使用理赔数据对该原型进行验证:结论:这种使用 PRO 数据和混合马尔可夫-SPC 分析的新方法可以分析和可视化随时间推移的近实时成本差异估算。在根据理赔数据标准成功验证之前,这种方法可以为改进、宣传和战略规划工作提供更全面的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Permanente journal
The Permanente journal Medicine-Medicine (all)
CiteScore
2.20
自引率
0.00%
发文量
86
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信