{"title":"Causal definitions versus casual estimation: Reply to Valente et al. (2022).","authors":"Holger Brandt","doi":"10.1037/met0000544","DOIUrl":null,"url":null,"abstract":"<p><p>In this response to Valente et al. (2022), I am discussing the plausibility and applicability of the proposed mediation model and its causal effects estimation for single case experimental designs (SCEDs). I will focus on the underlying assumptions that the authors use to identify the causal effects. These assumptions include the particularly problematic assumption of sequential ignorability or no-unmeasured confounders. First, I will discuss the plausibility of the assumption in general and then particularly for SCEDs by providing an analytic argument and a reanalysis of the empirical example in Valente et al. (2022). Second, I will provide a simulation that reproduces the design by Valente et al. (2022) with the exception that, for a more realistic depiction of empirical data, an unmeasured confounder affects the mediator and outcome variables. The results of this simulation study indicate that even minor violations will lead to Type I error rates up to 100% and coverage rates as low as 0% for the defined causal direct and indirect effects. Third, using historical data on the effect of birth control on stork population and birth rates, I will show that mediation models like the proposed method can lead to surprising artifacts. These artifacts can hardly be identified with statistically means including methods such as sensitivity analyses. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"29 3","pages":"589-602"},"PeriodicalIF":7.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000544","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this response to Valente et al. (2022), I am discussing the plausibility and applicability of the proposed mediation model and its causal effects estimation for single case experimental designs (SCEDs). I will focus on the underlying assumptions that the authors use to identify the causal effects. These assumptions include the particularly problematic assumption of sequential ignorability or no-unmeasured confounders. First, I will discuss the plausibility of the assumption in general and then particularly for SCEDs by providing an analytic argument and a reanalysis of the empirical example in Valente et al. (2022). Second, I will provide a simulation that reproduces the design by Valente et al. (2022) with the exception that, for a more realistic depiction of empirical data, an unmeasured confounder affects the mediator and outcome variables. The results of this simulation study indicate that even minor violations will lead to Type I error rates up to 100% and coverage rates as low as 0% for the defined causal direct and indirect effects. Third, using historical data on the effect of birth control on stork population and birth rates, I will show that mediation models like the proposed method can lead to surprising artifacts. These artifacts can hardly be identified with statistically means including methods such as sensitivity analyses. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.