Cagri G Besirli, Madhu Nath, Jingyu Yao, Mercy Pawar, Angela M Myers, David Zacks, Patrice E Fort
{"title":"HSPB4/CRYAA Protect Photoreceptors during Retinal Detachment in Part through FAIM2 Regulation.","authors":"Cagri G Besirli, Madhu Nath, Jingyu Yao, Mercy Pawar, Angela M Myers, David Zacks, Patrice E Fort","doi":"10.3390/neurolint16050068","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous study discussed crystallin family induction in an experimental rat model of retinal detachment. Therefore, we attempted to evaluate the role of α-crystallin in photoreceptor survival in an experimental model of retinal detachment, as well as its association with the intrinsically neuroprotective protein Fas-apoptotic inhibitory molecule 2 (FAIM2). Separation of retina and RPE was induced in rat and mouse eyes by subretinal injection of hyaluronic acid. Retinas were subsequently analyzed for the presence αA-crystallin (HSPB4) and αB-crystallin (HSPB5) proteins using immunohistochemistry and immunoblotting. Photoreceptor death was analyzed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining and cell counts. The 661W cells subjected to FasL were used as a cell model of photoreceptor degeneration to assess the mechanisms of the protective effect of αA-crystallin and its dependence on its phosphorylation on T148. We further evaluated the interaction between FAIM2 and αA-crystallin using a co-immunoprecipitation assay. Our results showed that α-crystallin protein levels were rapidly induced in response to retinal detachment, with αA-crystallin playing a particularly important role in protecting photoreceptors during retinal detachment. Our data also show that the photoreceptor intrinsically neuroprotective protein FAIM2 is induced and interacts with α-crystallins following retinal detachment. Mechanistically, our work also demonstrated that the phosphorylation of αA-crystallin is important for the interaction of αA-crystallin with FAIM2 and their neuroprotective effect. Thus, αA-crystallin is involved in the regulation of photoreceptor survival during retinal detachment, playing a key role in the stabilization of FAIM2, serving as an important modulator of photoreceptor cell survival under chronic stress conditions.</p>","PeriodicalId":19130,"journal":{"name":"Neurology International","volume":"16 5","pages":"905-917"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurolint16050068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our previous study discussed crystallin family induction in an experimental rat model of retinal detachment. Therefore, we attempted to evaluate the role of α-crystallin in photoreceptor survival in an experimental model of retinal detachment, as well as its association with the intrinsically neuroprotective protein Fas-apoptotic inhibitory molecule 2 (FAIM2). Separation of retina and RPE was induced in rat and mouse eyes by subretinal injection of hyaluronic acid. Retinas were subsequently analyzed for the presence αA-crystallin (HSPB4) and αB-crystallin (HSPB5) proteins using immunohistochemistry and immunoblotting. Photoreceptor death was analyzed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining and cell counts. The 661W cells subjected to FasL were used as a cell model of photoreceptor degeneration to assess the mechanisms of the protective effect of αA-crystallin and its dependence on its phosphorylation on T148. We further evaluated the interaction between FAIM2 and αA-crystallin using a co-immunoprecipitation assay. Our results showed that α-crystallin protein levels were rapidly induced in response to retinal detachment, with αA-crystallin playing a particularly important role in protecting photoreceptors during retinal detachment. Our data also show that the photoreceptor intrinsically neuroprotective protein FAIM2 is induced and interacts with α-crystallins following retinal detachment. Mechanistically, our work also demonstrated that the phosphorylation of αA-crystallin is important for the interaction of αA-crystallin with FAIM2 and their neuroprotective effect. Thus, αA-crystallin is involved in the regulation of photoreceptor survival during retinal detachment, playing a key role in the stabilization of FAIM2, serving as an important modulator of photoreceptor cell survival under chronic stress conditions.