Arakkaveettil Kabeer Farha, Olivier Habimana, Harold Corke
{"title":"Guanabenz acetate, an antihypertensive drug repurposed as an inhibitor of <i>Escherichia coli</i> biofilm.","authors":"Arakkaveettil Kabeer Farha, Olivier Habimana, Harold Corke","doi":"10.1128/spectrum.00738-24","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms formed by <i>Escherichia coli</i> are composed of amyloid curli and cellulose and have been shown to be linked to pathogenicity, antibiotic resistance, and chronic infections. Guanabenz acetate (GABE), an antihypertensive drug, was identified as a potential strategic repurposing drug due to its biofilm inhibitory properties following an extensive antimicrobial screening assay of 2,202 Food and Drug Administration-approved non-antibiotic agents. The results of this study provide insights into the effectiveness of GABE as a therapeutic alternative against <i>E. coli</i> biofilm-associated infectious diseases.</p><p><strong>Importance: </strong>Biofilm-associated bacterial infections are one of the major problems in medical settings. There are currently limited biofilm inhibitors available for clinical use. Guanabenz acetate, a drug used to treat high blood pressure, was found to be an effective anti-biofilm agent against <i>Escherichia coli</i>. Our results show that this drug can inhibit the production of cellulose and curli amyloid protein, which are the two main components of <i>E. coli</i> biofilms. Our findings highlight the possibility of repurposing a drug to prevent <i>E. coli</i> biofilm formation.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.00738-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilms formed by Escherichia coli are composed of amyloid curli and cellulose and have been shown to be linked to pathogenicity, antibiotic resistance, and chronic infections. Guanabenz acetate (GABE), an antihypertensive drug, was identified as a potential strategic repurposing drug due to its biofilm inhibitory properties following an extensive antimicrobial screening assay of 2,202 Food and Drug Administration-approved non-antibiotic agents. The results of this study provide insights into the effectiveness of GABE as a therapeutic alternative against E. coli biofilm-associated infectious diseases.
Importance: Biofilm-associated bacterial infections are one of the major problems in medical settings. There are currently limited biofilm inhibitors available for clinical use. Guanabenz acetate, a drug used to treat high blood pressure, was found to be an effective anti-biofilm agent against Escherichia coli. Our results show that this drug can inhibit the production of cellulose and curli amyloid protein, which are the two main components of E. coli biofilms. Our findings highlight the possibility of repurposing a drug to prevent E. coli biofilm formation.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.