Whole-cell Rieske non-heme iron biocatalysts.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2024-01-01 Epub Date: 2024-06-22 DOI:10.1016/bs.mie.2024.05.008
Meredith B Mock, Shuyuan Zhang, Ryan M Summers
{"title":"Whole-cell Rieske non-heme iron biocatalysts.","authors":"Meredith B Mock, Shuyuan Zhang, Ryan M Summers","doi":"10.1016/bs.mie.2024.05.008","DOIUrl":null,"url":null,"abstract":"<p><p>Rieske non-heme iron oxygenases (ROs) possess the ability to catalyze a wide range of reactions. Their ability to degrade aromatic compounds is a unique characteristic and makes ROs interesting for a variety of potential applications. However, purified ROs can be challenging to work with due to low stability and long, complex electron transport chains. Whole cell biocatalysis represents a quick and reliable method for characterizing the activity of ROs and harnessing their metabolic potential. In this protocol, we outline a step-by-step protocol for the overexpression of ROs for whole cell biocatalysis and characterization. We have utilized a caffeine-degrading, N-demethylation system, expressing the RO genes ndmA and ndmD, as an example of this method.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"703 ","pages":"243-262"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.05.008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Rieske non-heme iron oxygenases (ROs) possess the ability to catalyze a wide range of reactions. Their ability to degrade aromatic compounds is a unique characteristic and makes ROs interesting for a variety of potential applications. However, purified ROs can be challenging to work with due to low stability and long, complex electron transport chains. Whole cell biocatalysis represents a quick and reliable method for characterizing the activity of ROs and harnessing their metabolic potential. In this protocol, we outline a step-by-step protocol for the overexpression of ROs for whole cell biocatalysis and characterization. We have utilized a caffeine-degrading, N-demethylation system, expressing the RO genes ndmA and ndmD, as an example of this method.

全细胞 Rieske 非血红素铁生物催化剂。
里斯克非血红素铁氧合酶(ROs)具有催化多种反应的能力。它们降解芳香族化合物的能力是其独一无二的特性,这使得 ROs 在各种潜在应用中都很有吸引力。然而,纯化的 ROs 由于稳定性低、电子传递链长且复杂,因此工作起来具有挑战性。全细胞生物催化是表征 ROs 活性和利用其代谢潜力的一种快速可靠的方法。在本方案中,我们概述了过表达 ROs 以进行全细胞生物催化和表征的分步方案。我们以表达 RO 基因 ndmA 和 ndmD 的咖啡碱降解 N-去甲基化系统为例,介绍了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信