Partial weight-bearing and range of motion limitation significantly reduce the loads at medial meniscus posterior root repair sutures in a cadaveric biomechanical model.
Matthias Sukopp, Nina Schwab, Jonas Schwer, Julian Frey, Jonas Walter Metzger, Anita Ignatius, Mario Perl, Firooz Salami, Daniel Vogele, Thomas Kappe, Andreas Martin Seitz
{"title":"Partial weight-bearing and range of motion limitation significantly reduce the loads at medial meniscus posterior root repair sutures in a cadaveric biomechanical model.","authors":"Matthias Sukopp, Nina Schwab, Jonas Schwer, Julian Frey, Jonas Walter Metzger, Anita Ignatius, Mario Perl, Firooz Salami, Daniel Vogele, Thomas Kappe, Andreas Martin Seitz","doi":"10.1002/ksa.12465","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to investigate the influence of medial meniscus posterior root avulsion (MMPRA) before and after surgical treatment on the biomechanics of the knee joint, including suture repair forces during daily and crutch-assisted gait movements.</p><p><strong>Methods: </strong>MMPRA were investigated in eight human cadaver knee joint specimens by a dynamic knee joint simulator with daily (normal gait, gait with additional rotational movement, standing up, sitting down) and rehabilitation-associated movements (crutch-assisted gait with limited flexion range of motion [30°] and 30% [toe-touch weight-bearing, TTWB] and 50% of body weight [partial weight-bearing, PWB]) with simulated physiologic muscle forces. Each specimen was tested in intact, torn and repaired (transtibial suture) state. The biomechanical parameters were: medial mean contact pressure and area, knee joint kinematics, medial displacement of the posterior meniscus horn and loading on the anchoring suture.</p><p><strong>Results: </strong>Significant reduction of the contact area due to the avulsion was observed in all movements except for PWB and sitting down. MMPRA repair significantly increased the contact areas during all movements, bringing them to levels statistically indistinguishable from the initial state. MMPRA resulted in a medial displacement up to 12.8 mm (sitting down) and could be reattached with a residual displacement ranging from 0.7 mm (PWB) to 5.7 mm (standing up), all significantly (p < 0.001) reduced compared to the torn state. The mean peak anchoring suture load increased from TTWB (77 N), PWB (91 N) to normal gait (194 N), gait rotation (207 N), sitting (201 N; p < 0.01) and to standing up (232 N; p = 0.03).</p><p><strong>Conclusion: </strong>Surgical treatment of MMPRA allows restoration of physiological knee joint biomechanics. Crutch-assisted movements reduce the loading of the repair suture, thus likewise the risk for failure. From a biomechanical point of view, crutch-assisted movements are recommended for the early rehabilitation phase after MMPRA repair.</p><p><strong>Level of evidence: </strong>Level V.</p>","PeriodicalId":17880,"journal":{"name":"Knee Surgery, Sports Traumatology, Arthroscopy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee Surgery, Sports Traumatology, Arthroscopy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12465","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study was to investigate the influence of medial meniscus posterior root avulsion (MMPRA) before and after surgical treatment on the biomechanics of the knee joint, including suture repair forces during daily and crutch-assisted gait movements.
Methods: MMPRA were investigated in eight human cadaver knee joint specimens by a dynamic knee joint simulator with daily (normal gait, gait with additional rotational movement, standing up, sitting down) and rehabilitation-associated movements (crutch-assisted gait with limited flexion range of motion [30°] and 30% [toe-touch weight-bearing, TTWB] and 50% of body weight [partial weight-bearing, PWB]) with simulated physiologic muscle forces. Each specimen was tested in intact, torn and repaired (transtibial suture) state. The biomechanical parameters were: medial mean contact pressure and area, knee joint kinematics, medial displacement of the posterior meniscus horn and loading on the anchoring suture.
Results: Significant reduction of the contact area due to the avulsion was observed in all movements except for PWB and sitting down. MMPRA repair significantly increased the contact areas during all movements, bringing them to levels statistically indistinguishable from the initial state. MMPRA resulted in a medial displacement up to 12.8 mm (sitting down) and could be reattached with a residual displacement ranging from 0.7 mm (PWB) to 5.7 mm (standing up), all significantly (p < 0.001) reduced compared to the torn state. The mean peak anchoring suture load increased from TTWB (77 N), PWB (91 N) to normal gait (194 N), gait rotation (207 N), sitting (201 N; p < 0.01) and to standing up (232 N; p = 0.03).
Conclusion: Surgical treatment of MMPRA allows restoration of physiological knee joint biomechanics. Crutch-assisted movements reduce the loading of the repair suture, thus likewise the risk for failure. From a biomechanical point of view, crutch-assisted movements are recommended for the early rehabilitation phase after MMPRA repair.
期刊介绍:
Few other areas of orthopedic surgery and traumatology have undergone such a dramatic evolution in the last 10 years as knee surgery, arthroscopy and sports traumatology. Ranked among the top 33% of journals in both Orthopedics and Sports Sciences, the goal of this European journal is to publish papers about innovative knee surgery, sports trauma surgery and arthroscopy. Each issue features a series of peer-reviewed articles that deal with diagnosis and management and with basic research. Each issue also contains at least one review article about an important clinical problem. Case presentations or short notes about technical innovations are also accepted for publication.
The articles cover all aspects of knee surgery and all types of sports trauma; in addition, epidemiology, diagnosis, treatment and prevention, and all types of arthroscopy (not only the knee but also the shoulder, elbow, wrist, hip, ankle, etc.) are addressed. Articles on new diagnostic techniques such as MRI and ultrasound and high-quality articles about the biomechanics of joints, muscles and tendons are included. Although this is largely a clinical journal, it is also open to basic research with clinical relevance.
Because the journal is supported by a distinguished European Editorial Board, assisted by an international Advisory Board, you can be assured that the journal maintains the highest standards.
Official Clinical Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA).