The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2024-10-01 Epub Date: 2024-10-11 DOI:10.1242/jcs.262219
Monika Bijata, Alexander Wirth, Jakub Wlodarczyk, Evgeni Ponimaskin
{"title":"The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress.","authors":"Monika Bijata, Alexander Wirth, Jakub Wlodarczyk, Evgeni Ponimaskin","doi":"10.1242/jcs.262219","DOIUrl":null,"url":null,"abstract":"<p><p>Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262219","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.

慢性压力中血清素 5-HT1A 和 5-HT7 受体的相互作用。
血清素调节大脑中的多种生理和病理过程,包括情绪和认知。血清素受体 5-HT1AR 和 5-HT7R 已成为压力相关疾病,尤其是抑郁症的关键因素。这些受体可以形成异二聚体,从而影响它们的功能。在这里,我们探讨了 5-HT1AR 和 5-HT7R 在对照组和应激组小鼠大脑中的表达和异二聚体水平的发育动态。在对照组动物的发育过程中,我们发现在前额叶皮层(PFC)和海马中,5-HT1AR的表达量高于5-HT7R。利用慢性不可预知应激作为抑郁模型,我们发现5-HT7R的表达只在有恢复能力的动物的前额叶皮层中增加,而对照组和厌食小鼠的5-HT1AR表达没有变化。异二聚体原位定量分析显示,PFC 是 5-HT1AR/5-HT7R 异二聚体含量最高的区域。更重要的是,在长期应激后,异二聚体的数量仅在失乐症小鼠的前脑功能区显著减少,而在恢复能力强的动物中则不受影响。这些结果表明,脑区特异性 5-HT1AR/5-HT7R 异源二聚体对抑郁样行为的形成和恢复能力的发展具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信