{"title":"Whole genome re-sequencing reveals high altitude adaptation signatures and admixture in Ladakhi cattle","authors":"Subrata Koloi , Indrajit Ganguly , Sanjeev Singh , Satpal Dixit","doi":"10.1016/j.gene.2024.148957","DOIUrl":null,"url":null,"abstract":"<div><div>Ladakhi cattle, native to the high-altitude region of Ladakh in northern India (ranging from 3,000 to 5,000 m above sea level), have evolved unique genetic adaptations to thrive in harsh environmental conditions, such as hypoxia, extreme cold, and low humidity. This study explored the genome of Ladakhi cattle to investigate genetic structure, selection signatures, and adaptive mechanisms. Whole genome sequencing reads, generated on Illumina NovaSeq 6000 platform, were aligned to the <em>Bos taurus</em> reference genome with BWA-MEM. SNPs were identified and filtered using GATK and bcftools, and functionally annotated with SnpEff. For population genomic analysis, PCA and admixture modeling assessed genetic structure, while Neighbor-Joining trees, LD decay, nucleotide diversity (π), and F<sub>ST</sub> evaluated phylogenetic relationships and genetic variation. Selective sweeps were detected using RAiSD, and gene-set enrichment and protein–protein interaction analyses were conducted to explore functional pathways related to adaptation. The study revealed 3,759,279 unique SNPs and demonstrated that Ladakhi cattle form a distinct genetic cluster with an estimated admixture of 68 % <em>Bos indicus</em> and 32 % <em>Bos taurus</em> ancestry. Key findings include rapid linkage disequilibrium decay, low inbreeding level, and the identification of selection signatures and genes associated with hypoxia response, energy metabolism, and cold adaptation. Mean nucleotide diversity (π, 0.0037) and F<sub>ST</sub> values indicated moderate genetic differentiation from other breeds. The analysis highlighted selection signatures for genes like <em>HIF1A, ENO4, ANGPT1, EPO, NOS3, MAPK3, HMOX1, BCL2,</em> <em>CAMK2D, MTOR, AKT2,</em> <em>PIK3CB,</em> and <em>MAP2K1</em>, among others, including various keratin and heat shock proteins. The interaction between genes associated with hypoxia signaling (HIF-1) and other enriched pathways such as PI3K, mTOR, NFκB, ERK, and ER stress, reveals a complex mechanism for managing hypoxic stress in Ladakhi cattle. These findings offer valuable insights for breeding programs aimed at enhancing livestock resilience in extreme environments and enhance understanding of mammalian adaptation to high-altitude conditions.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111924008382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Ladakhi cattle, native to the high-altitude region of Ladakh in northern India (ranging from 3,000 to 5,000 m above sea level), have evolved unique genetic adaptations to thrive in harsh environmental conditions, such as hypoxia, extreme cold, and low humidity. This study explored the genome of Ladakhi cattle to investigate genetic structure, selection signatures, and adaptive mechanisms. Whole genome sequencing reads, generated on Illumina NovaSeq 6000 platform, were aligned to the Bos taurus reference genome with BWA-MEM. SNPs were identified and filtered using GATK and bcftools, and functionally annotated with SnpEff. For population genomic analysis, PCA and admixture modeling assessed genetic structure, while Neighbor-Joining trees, LD decay, nucleotide diversity (π), and FST evaluated phylogenetic relationships and genetic variation. Selective sweeps were detected using RAiSD, and gene-set enrichment and protein–protein interaction analyses were conducted to explore functional pathways related to adaptation. The study revealed 3,759,279 unique SNPs and demonstrated that Ladakhi cattle form a distinct genetic cluster with an estimated admixture of 68 % Bos indicus and 32 % Bos taurus ancestry. Key findings include rapid linkage disequilibrium decay, low inbreeding level, and the identification of selection signatures and genes associated with hypoxia response, energy metabolism, and cold adaptation. Mean nucleotide diversity (π, 0.0037) and FST values indicated moderate genetic differentiation from other breeds. The analysis highlighted selection signatures for genes like HIF1A, ENO4, ANGPT1, EPO, NOS3, MAPK3, HMOX1, BCL2,CAMK2D, MTOR, AKT2,PIK3CB, and MAP2K1, among others, including various keratin and heat shock proteins. The interaction between genes associated with hypoxia signaling (HIF-1) and other enriched pathways such as PI3K, mTOR, NFκB, ERK, and ER stress, reveals a complex mechanism for managing hypoxic stress in Ladakhi cattle. These findings offer valuable insights for breeding programs aimed at enhancing livestock resilience in extreme environments and enhance understanding of mammalian adaptation to high-altitude conditions.