Fat body glycolysis defects inhibit mTOR and promote distant muscle disorganization through TNF-α/egr and ImpL2 signaling in Drosophila larvae.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Reports Pub Date : 2024-10-01 Epub Date: 2024-09-09 DOI:10.1038/s44319-024-00241-3
Miriam Rodríguez-Vázquez, Jennifer Falconi, Lisa Heron-Milhavet, Patrice Lassus, Charles Géminard, Alexandre Djiane
{"title":"Fat body glycolysis defects inhibit mTOR and promote distant muscle disorganization through TNF-α/egr and ImpL2 signaling in Drosophila larvae.","authors":"Miriam Rodríguez-Vázquez, Jennifer Falconi, Lisa Heron-Milhavet, Patrice Lassus, Charles Géminard, Alexandre Djiane","doi":"10.1038/s44319-024-00241-3","DOIUrl":null,"url":null,"abstract":"<p><p>The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4410-4432"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00241-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.

在果蝇幼虫体内,脂肪体糖酵解缺陷通过 TNF-α/egr 和 ImpL2 信号传导抑制 mTOR 并促进远端肌肉紊乱。
果蝇幼虫的脂肪体具有储备组织的功能,并通过其内分泌活动参与调节机体的生长和平衡。为了更好地了解脂肪体在生长协调中的作用,我们通过敲除脂肪细胞中糖酵解途径的几个关键酶来诱导脂肪体萎缩。我们的研究结果表明,糖酵解最后步骤的损伤会导致脂肪细胞体积和脂滴含量急剧下降,并下调 mTOR 通路和 REPTOR 的转录活性。令人震惊的是,脂肪体萎缩导致体壁肌肉远端紊乱,并在血淋巴中释放出肌肉特异性蛋白。此外,我们还发现糖酵解抑制下游的脂肪体萎缩需要REPTOR活性,脂肪体萎缩对肌肉的影响取决于TNF-α/egr和胰岛素通路抑制剂ImpL2的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信