Johann Catty, Olivier Seguin, Jean-Laurent Juillie, Daniel Mathieu, Erika Parmentier-Decrucq
{"title":"Acoustic emission, an innovative diagnosis tool for therapeutic hyperbaric chambers: or how to requalify safely using pneumatic pressure test.","authors":"Johann Catty, Olivier Seguin, Jean-Laurent Juillie, Daniel Mathieu, Erika Parmentier-Decrucq","doi":"10.28920/dhm54.3.204-211","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic hyperbaric chambers require continuous monitoring and maintenance, including periodic requalification. The primary aim is to verify the suitability for continued safe service. Maintenance is regulated in Europe, and in France requalification is mandatory where a hyperbaric chamber operates above pressures equal to or greater than 4 bar gauge. French requalification requires a hydraulic (hydrostatic) pressure test to determine the absence of deformation and leaks during the test. However, in such cases, it is often necessary to move the chamber if the combined mass of the chamber and water may exceed the allowable floor loading strength. In 2009, an innovative alternative to a hydraulic pressure testing was authorised in France. It consists of carrying out a pneumatic pressure test simultaneously with a non-destructive monitoring technique called 'acoustic emission'. This can be compared to a microseismology technique, where sensors are applied to the pressure retaining boundary of the hyperbaric chamber, and signals emitted by the vessel under load are captured. These signals are analysed, prioritised, and classified, to determine the physical position of any sources (artifacts) through triangulation calculations. This technique makes it possible to assess the behaviour of the vessel very accurately in real time and, a posteriori, to assess its fitness for continued service. This technique reduces the unavailability time of the chamber to two days, compared to potentially several weeks when a hydraulic test is performed. Over and above financial considerations and availability of facilities, this technique provides a baseline of the integrity of pressure vessels and allows monitoring over time of any potential deterioration.</p>","PeriodicalId":11296,"journal":{"name":"Diving and hyperbaric medicine","volume":"54 3","pages":"204-211"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diving and hyperbaric medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.28920/dhm54.3.204-211","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic hyperbaric chambers require continuous monitoring and maintenance, including periodic requalification. The primary aim is to verify the suitability for continued safe service. Maintenance is regulated in Europe, and in France requalification is mandatory where a hyperbaric chamber operates above pressures equal to or greater than 4 bar gauge. French requalification requires a hydraulic (hydrostatic) pressure test to determine the absence of deformation and leaks during the test. However, in such cases, it is often necessary to move the chamber if the combined mass of the chamber and water may exceed the allowable floor loading strength. In 2009, an innovative alternative to a hydraulic pressure testing was authorised in France. It consists of carrying out a pneumatic pressure test simultaneously with a non-destructive monitoring technique called 'acoustic emission'. This can be compared to a microseismology technique, where sensors are applied to the pressure retaining boundary of the hyperbaric chamber, and signals emitted by the vessel under load are captured. These signals are analysed, prioritised, and classified, to determine the physical position of any sources (artifacts) through triangulation calculations. This technique makes it possible to assess the behaviour of the vessel very accurately in real time and, a posteriori, to assess its fitness for continued service. This technique reduces the unavailability time of the chamber to two days, compared to potentially several weeks when a hydraulic test is performed. Over and above financial considerations and availability of facilities, this technique provides a baseline of the integrity of pressure vessels and allows monitoring over time of any potential deterioration.
期刊介绍:
Diving and Hyperbaric Medicine (DHM) is the combined journal of the South Pacific Underwater Medicine Society (SPUMS) and the European Underwater and Baromedical Society (EUBS). It seeks to publish papers of high quality on all aspects of diving and hyperbaric medicine of interest to diving medical professionals, physicians of all specialties, scientists, members of the diving and hyperbaric industries, and divers. Manuscripts must be offered exclusively to Diving and Hyperbaric Medicine, unless clearly authenticated copyright exemption accompaniesthe manuscript. All manuscripts will be subject to peer review. Accepted contributions will also be subject to editing.