Yan Pan, Zijing Gao, Xuejian Cui, Zhen Li, Rui Jiang
{"title":"collectNET: a web server for integrated inference of cell-cell communication network.","authors":"Yan Pan, Zijing Gao, Xuejian Cui, Zhen Li, Rui Jiang","doi":"10.1093/database/baae098","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-cell communication (CCC) through ligand-receptor (L-R) pairs forms the cornerstone for complex functionalities in multicellular organisms. Deciphering such intercellular signaling can contribute to unraveling disease mechanisms and enable targeted therapy. Nonetheless, notable biases and inconsistencies are evident among the inferential outcomes generated by current methods for inferring CCC network. To fill this gap, we developed collectNET (http://health.tsinghua.edu.cn/collectnet) as a comprehensive web platform for analyzing CCC network, with efficient calculation, hierarchical browsing, comprehensive statistics, advanced searching, and intuitive visualization. collectNET provides a reliable online inference service with prior knowledge of three public L-R databases and systematic integration of three mainstream inference methods. Additionally, collectNET has assembled a human CCC atlas, including 126 785 significant communication pairs based on 343 023 cells. We anticipate that collectNET will benefit researchers in gaining a more holistic understanding of cell development and differentiation mechanisms. Database URL: http://health.tsinghua.edu.cn/collectnet.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae098","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell-cell communication (CCC) through ligand-receptor (L-R) pairs forms the cornerstone for complex functionalities in multicellular organisms. Deciphering such intercellular signaling can contribute to unraveling disease mechanisms and enable targeted therapy. Nonetheless, notable biases and inconsistencies are evident among the inferential outcomes generated by current methods for inferring CCC network. To fill this gap, we developed collectNET (http://health.tsinghua.edu.cn/collectnet) as a comprehensive web platform for analyzing CCC network, with efficient calculation, hierarchical browsing, comprehensive statistics, advanced searching, and intuitive visualization. collectNET provides a reliable online inference service with prior knowledge of three public L-R databases and systematic integration of three mainstream inference methods. Additionally, collectNET has assembled a human CCC atlas, including 126 785 significant communication pairs based on 343 023 cells. We anticipate that collectNET will benefit researchers in gaining a more holistic understanding of cell development and differentiation mechanisms. Database URL: http://health.tsinghua.edu.cn/collectnet.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.