{"title":"Quantitative Characterization of Fluorine-Centered Noncovalent Interactions in Crystalline Benzanilides.","authors":"Pradip Kumar Mondal, Rahul Shukla, Saurish Khandelwal, Kartikay Sharma, Shivani Gonde, Subha Biswas, Shubham Som, Deepak Chopra","doi":"10.1002/cphc.202400724","DOIUrl":null,"url":null,"abstract":"<p><p>Six isomeric molecules, featuring a minimum of three fluorine atoms on either the benzoyl or aniline side, have been synthesized, crystallized and characterized through single crystal X-ray diffraction (SCXRD). In addition, two other compounds, containing six fluorine atoms, three on each of the benzoyl and aniline side of the benzanilide scaffold have also been characterized through SCXRD. This current study aims to augment the capacity for hydrogen bond formation, specifically involving organic fluorine, by elevating the acidity of the involved hydrogens through the incorporation of highly electronegative fluorine atoms, in the presence of strong N-H⋅⋅⋅O=C H-bonds. Lattice energy calculations and assessment of intermolecular interaction energies elucidate the contributions of electrostatics and dispersion forces in crystal packing. The topological analysis of the electron density is characterized by the presence of bond critical points (BCPs) involving C-H⋅⋅⋅F and F⋅⋅⋅F contacts, thus establishing the bonding nature of these interactions which play a crucial role in the crystal packing in addition to the presence of traditional N-H⋅⋅⋅O=C H-bonds.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400724"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400724","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Six isomeric molecules, featuring a minimum of three fluorine atoms on either the benzoyl or aniline side, have been synthesized, crystallized and characterized through single crystal X-ray diffraction (SCXRD). In addition, two other compounds, containing six fluorine atoms, three on each of the benzoyl and aniline side of the benzanilide scaffold have also been characterized through SCXRD. This current study aims to augment the capacity for hydrogen bond formation, specifically involving organic fluorine, by elevating the acidity of the involved hydrogens through the incorporation of highly electronegative fluorine atoms, in the presence of strong N-H⋅⋅⋅O=C H-bonds. Lattice energy calculations and assessment of intermolecular interaction energies elucidate the contributions of electrostatics and dispersion forces in crystal packing. The topological analysis of the electron density is characterized by the presence of bond critical points (BCPs) involving C-H⋅⋅⋅F and F⋅⋅⋅F contacts, thus establishing the bonding nature of these interactions which play a crucial role in the crystal packing in addition to the presence of traditional N-H⋅⋅⋅O=C H-bonds.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.