Biallelic PTPMT1 variants disrupt cardiolipin metabolism and lead to a neurodevelopmental syndrome.

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2025-02-03 DOI:10.1093/brain/awae268
Micol Falabella, Chiara Pizzamiglio, Luis Carlos Tabara, Benjamin Munro, Mohamed S Abdel-Hamid, Ece Sonmezler, William L Macken, Shanti Lu, Lisa Tilokani, Padraig J Flannery, Nina Patel, Simon A S Pope, Simon J R Heales, Dania B H Hammadi, Charlotte L Alston, Robert W Taylor, Hanns Lochmuller, Cathy E Woodward, Robyn Labrum, Jana Vandrovcova, Henry Houlden, Efstathia Chronopoulou, Germaine Pierre, Reza Maroofian, Michael G Hanna, Jan-Willem Taanman, Semra Hiz, Yavuz Oktay, Maha S Zaki, Rita Horvath, Julien Prudent, Robert D S Pitceathly
{"title":"Biallelic PTPMT1 variants disrupt cardiolipin metabolism and lead to a neurodevelopmental syndrome.","authors":"Micol Falabella, Chiara Pizzamiglio, Luis Carlos Tabara, Benjamin Munro, Mohamed S Abdel-Hamid, Ece Sonmezler, William L Macken, Shanti Lu, Lisa Tilokani, Padraig J Flannery, Nina Patel, Simon A S Pope, Simon J R Heales, Dania B H Hammadi, Charlotte L Alston, Robert W Taylor, Hanns Lochmuller, Cathy E Woodward, Robyn Labrum, Jana Vandrovcova, Henry Houlden, Efstathia Chronopoulou, Germaine Pierre, Reza Maroofian, Michael G Hanna, Jan-Willem Taanman, Semra Hiz, Yavuz Oktay, Maha S Zaki, Rita Horvath, Julien Prudent, Robert D S Pitceathly","doi":"10.1093/brain/awae268","DOIUrl":null,"url":null,"abstract":"<p><p>Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid metabolism. Cardiolipin, the signature phospholipid of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesized and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to cardiolipin biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human cardiolipin-related PMDs are not fully characterized. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo cardiolipin biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterized the molecular defects associated with mutant PTPMT1 and confirmed the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterize the functional role of PTPMT1 in cardiolipin homeostasis, we created a ptpmt1 knockout zebrafish. This model had abnormalities in body size, developmental alterations, decreased total cardiolipin levels and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired cardiolipin metabolism, highlighting the contribution of aberrant cardiolipin metabolism towards human disease and emphasizing the importance of normal cardiolipin homeostasis during neurodevelopment.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"647-662"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae268","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid metabolism. Cardiolipin, the signature phospholipid of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesized and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to cardiolipin biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human cardiolipin-related PMDs are not fully characterized. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo cardiolipin biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterized the molecular defects associated with mutant PTPMT1 and confirmed the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterize the functional role of PTPMT1 in cardiolipin homeostasis, we created a ptpmt1 knockout zebrafish. This model had abnormalities in body size, developmental alterations, decreased total cardiolipin levels and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired cardiolipin metabolism, highlighting the contribution of aberrant cardiolipin metabolism towards human disease and emphasizing the importance of normal cardiolipin homeostasis during neurodevelopment.

双叶 PTPMT1 变体会破坏心磷脂代谢,导致神经发育综合征。
原发性线粒体疾病(PMDs)是最常见的遗传性神经系统疾病之一。它们是由线粒体或核 DNA 中的致病变异引起的,这些变异破坏了线粒体结构和/或功能,导致氧化磷酸化(OXPHOS)功能受损。一种新出现的 PMD 亚类涉及磷脂(PL)代谢缺陷。心磷脂(CL)是线粒体的标志性磷脂,主要存在于线粒体内膜中,通过多种酶进行生物合成和重塑,对线粒体生物学的多个方面起着重要作用。有助于 CL 生物合成的基因最近与 PMD 联系在一起。然而,人类与 CL 相关的 PMD 的病理生理机制尚未完全定性。在这里,我们报告了来自三个独立家庭的六名携带 PTPMT1 双唇变体的患者,PTPMT1 是一种线粒体酪氨酸磷酸酶,需要用于 CL 的新生物合成。所有患者均表现为复杂的、新生儿期/婴儿期发病的神经和神经发育综合征,包括发育迟缓、小头畸形、面部畸形、癫痫、痉挛、小脑共济失调和眼球震颤、感音神经性听力损失、视神经萎缩和球部功能障碍。脑部核磁共振成像显示,胼胝体变薄、小脑萎缩和白质改变的组合各不相同。我们利用患者来源的成纤维细胞和骨骼肌组织,结合细胞挽救实验,确定了与突变型 PTPMT1 相关的分子缺陷的特征,并证实了 PTPMT1 缺失对线粒体结构和功能的下游致病效应。为了进一步描述 PTPMT1 在 CL 平衡中的功能作用,我们建立了一个斑马鱼 ptpmt1 基因敲除模型,该模型与体型异常、发育改变、总 CL 水平下降和 OXPHOS 缺乏有关。这些数据共同表明,PTPMT1 功能的缺失与一种由 CL 代谢受损引起的新型常染色体隐性遗传 PMD 有关,突出了 CL 代谢异常对人类疾病的影响,并强调了神经发育过程中正常 CL 平衡的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信