Predictive machine learning models based on VASARI features for WHO grading, isocitrate dehydrogenase mutation, and 1p19q co-deletion status: a multicenter study.
{"title":"Predictive machine learning models based on VASARI features for WHO grading, isocitrate dehydrogenase mutation, and 1p19q co-deletion status: a multicenter study.","authors":"Wei Zhao, Chao Xie, Kukun Hanjiaerbieke, Rui Xu, Tuxunjiang Pahati, Shaoyu Wang, Junjie Li, Yunling Wang","doi":"10.62347/MZLF2460","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of our study was to develop predictive models using Visually Accessible Rembrandt Images (VASARI) magnetic resonance imaging (MRI) features combined with machine learning techniques to predict the World Health Organization (WHO) grade, isocitrate dehydrogenase (IDH) mutation status, and 1p19q co-deletion status of high-grade gliomas. To achieve this, we retrospectively included 485 patients with high-grade glioma from the First Affiliated Hospital of Xinjiang Medical University, of which 312 patients were randomly divided into a training set (n=218) and a test set (n=94) in a 7:3 ratio. Twenty-five VASARI MRI features were selected from an initial set of 30, and three machine learning models - Multilayer Perceptron (MP), Bernoulli Naive Bayes (BNB), and Logistic Regression (LR) - were trained using the training set. The most informative features were identified using recursive feature elimination. Model performance was assessed using the test set and an independent validation set of 173 patients from Beijing Tiantan Hospital. The results indicated that the MP model exhibited the highest predictive accuracy on the training set, achieving an area under the curve (AUC) close to 1, indicating perfect discrimination. However, its performance decreased in the test and validation sets; particularly for predicting the 1p19q co-deletion status, the AUC was only 0.703, suggesting potential overfitting. On the other hand, the BNB model demonstrated robust generalization on the test and validation sets, with AUC values of 0.8292 and 0.8106, respectively, for predicting IDH mutation status and 1p19q co-deletion status, indicating high accuracy, sensitivity, and specificity. The LR model also showed good performance with AUCs of 0.7845 and 0.8674 on the test and validation sets, respectively, for predicting IDH mutation status, although it was slightly inferior to the BNB model for the 1p19q co-deletion status. In conclusion, integrating VASARI MRI features with machine learning techniques shows promise for the non-invasive prediction of glioma molecular markers, which could guide treatment strategies and improve prognosis in glioma patients. Nonetheless, further model optimization and validation are necessary to enhance its clinical utility.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 8","pages":"3826-3841"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/MZLF2460","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of our study was to develop predictive models using Visually Accessible Rembrandt Images (VASARI) magnetic resonance imaging (MRI) features combined with machine learning techniques to predict the World Health Organization (WHO) grade, isocitrate dehydrogenase (IDH) mutation status, and 1p19q co-deletion status of high-grade gliomas. To achieve this, we retrospectively included 485 patients with high-grade glioma from the First Affiliated Hospital of Xinjiang Medical University, of which 312 patients were randomly divided into a training set (n=218) and a test set (n=94) in a 7:3 ratio. Twenty-five VASARI MRI features were selected from an initial set of 30, and three machine learning models - Multilayer Perceptron (MP), Bernoulli Naive Bayes (BNB), and Logistic Regression (LR) - were trained using the training set. The most informative features were identified using recursive feature elimination. Model performance was assessed using the test set and an independent validation set of 173 patients from Beijing Tiantan Hospital. The results indicated that the MP model exhibited the highest predictive accuracy on the training set, achieving an area under the curve (AUC) close to 1, indicating perfect discrimination. However, its performance decreased in the test and validation sets; particularly for predicting the 1p19q co-deletion status, the AUC was only 0.703, suggesting potential overfitting. On the other hand, the BNB model demonstrated robust generalization on the test and validation sets, with AUC values of 0.8292 and 0.8106, respectively, for predicting IDH mutation status and 1p19q co-deletion status, indicating high accuracy, sensitivity, and specificity. The LR model also showed good performance with AUCs of 0.7845 and 0.8674 on the test and validation sets, respectively, for predicting IDH mutation status, although it was slightly inferior to the BNB model for the 1p19q co-deletion status. In conclusion, integrating VASARI MRI features with machine learning techniques shows promise for the non-invasive prediction of glioma molecular markers, which could guide treatment strategies and improve prognosis in glioma patients. Nonetheless, further model optimization and validation are necessary to enhance its clinical utility.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.