Min Kyung Lee, Na Hyun Park, Soo Young Lee, TaeSoo Kim
{"title":"Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation.","authors":"Min Kyung Lee, Na Hyun Park, Soo Young Lee, TaeSoo Kim","doi":"10.1016/j.jmb.2024.168796","DOIUrl":null,"url":null,"abstract":"<p><p>H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168796"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168796","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.