Light-Activatable, Cell-Type Specific Labeling of the Nascent Proteome.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
H T Evans, T Ko, M M Oliveira, A Yu, S V Kalavai, E N Golhan, A Polavarapu, E Balamoti, V Wu, E Klann, D Trauner
{"title":"Light-Activatable, Cell-Type Specific Labeling of the Nascent Proteome.","authors":"H T Evans, T Ko, M M Oliveira, A Yu, S V Kalavai, E N Golhan, A Polavarapu, E Balamoti, V Wu, E Klann, D Trauner","doi":"10.1021/acschemneuro.4c00274","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the mechanisms by which protein synthesis contributes to complex biological processes has remained a challenging endeavor. This is particularly true in the field of neuroscience, where multiple, tightly regulated periods of new protein synthesis in different cell-types are thought to facilitate intricate neurological functions, such as memory formation. Current methods for labeling the <i>de novo</i> proteome have lacked the spatial and temporal resolution to accurately discriminate these overlapping and often competing windows of mRNA translation. To address this technological limitation, here we describe a novel, light-inducible specific method for labeling newly synthesized proteins within a targeted cell-type.By developing Opto-ANL, a photocaged version of the nonendogenous amino acid azidonorleucine (ANL), we can selectively label newly synthesized proteins in specific cell-types through the targeted expression of a mutant methionyl-tRNA synthetase (L274G-MetRS). We demonstrate that Opto-ANL can be rapidly uncaged by UV light treatment in both cell culture and mouse brain slices, with Opto-ANL labeled proteins being able to be visualized via fluorescent noncanonical amino acid tagging. We also reveal that pretreatment with Opto-ANL not only allows for the period of <i>de novo</i> proteomic labeling to be tightly controlled, but also improves labeling efficiency compared to regular ANL. To demonstrate the potential applications of this novel technique, we use Opto-ANL to detect insulin-induced increases in protein synthesis and to label the excitatory neuronal <i>de novo</i> proteome in mouse brain slices. We believe that this application of photopharmacology will allow researchers to generate novel insights into how the translational landscape is altered across cell-types during complex neurological phenomena such as memory formation.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00274","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the mechanisms by which protein synthesis contributes to complex biological processes has remained a challenging endeavor. This is particularly true in the field of neuroscience, where multiple, tightly regulated periods of new protein synthesis in different cell-types are thought to facilitate intricate neurological functions, such as memory formation. Current methods for labeling the de novo proteome have lacked the spatial and temporal resolution to accurately discriminate these overlapping and often competing windows of mRNA translation. To address this technological limitation, here we describe a novel, light-inducible specific method for labeling newly synthesized proteins within a targeted cell-type.By developing Opto-ANL, a photocaged version of the nonendogenous amino acid azidonorleucine (ANL), we can selectively label newly synthesized proteins in specific cell-types through the targeted expression of a mutant methionyl-tRNA synthetase (L274G-MetRS). We demonstrate that Opto-ANL can be rapidly uncaged by UV light treatment in both cell culture and mouse brain slices, with Opto-ANL labeled proteins being able to be visualized via fluorescent noncanonical amino acid tagging. We also reveal that pretreatment with Opto-ANL not only allows for the period of de novo proteomic labeling to be tightly controlled, but also improves labeling efficiency compared to regular ANL. To demonstrate the potential applications of this novel technique, we use Opto-ANL to detect insulin-induced increases in protein synthesis and to label the excitatory neuronal de novo proteome in mouse brain slices. We believe that this application of photopharmacology will allow researchers to generate novel insights into how the translational landscape is altered across cell-types during complex neurological phenomena such as memory formation.

对新生蛋白质组进行光激活、细胞类型特异性标记。
阐明蛋白质合成促进复杂生物过程的机制一直是一项具有挑战性的工作。在神经科学领域尤其如此,不同细胞类型中新蛋白质合成的多个严格调控期被认为促进了复杂的神经功能,如记忆的形成。目前标记新蛋白质组的方法缺乏空间和时间分辨率,无法准确区分这些相互重叠且经常相互竞争的 mRNA 翻译窗口。通过开发Opto-ANL(非内源性氨基酸叠氮亮氨酸(ANL)的光笼版本),我们可以通过靶向表达突变型蛋氨酰-tRNA合成酶(L274G-MetRS),选择性地标记特定细胞类型中新合成的蛋白质。我们证明,在细胞培养和小鼠脑切片中,Opto-ANL 可通过紫外线处理迅速解笼,Opto-ANL 标记的蛋白质可通过荧光非典型氨基酸标记进行可视化。我们还发现,与普通 ANL 相比,使用 Opto-ANL 进行预处理不仅能严格控制蛋白质组标记的时间,还能提高标记效率。为了展示这项新技术的潜在应用,我们使用 Opto-ANL 检测了胰岛素诱导的蛋白质合成增加,并标记了小鼠大脑切片中兴奋性神经元的从头蛋白质组。我们相信,光药理学的这一应用将使研究人员对记忆形成等复杂神经现象中不同细胞类型的转化情况如何改变产生新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信