{"title":"Thermally radiative nanofluid heat transfer analysis inside a closed chamber with gyrotactic microorganisms","authors":"Paluru Sreedevi, P. Sudarsana Reddy","doi":"10.1108/hff-02-2024-0146","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"37 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-02-2024-0146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.
Design/methodology/approach
Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.
Findings
It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.
Originality/value
To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf