A higher order multiscale method for the wave equation

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Felix Krumbiegel, Roland Maier
{"title":"A higher order multiscale method for the wave equation","authors":"Felix Krumbiegel, Roland Maier","doi":"10.1093/imanum/drae059","DOIUrl":null,"url":null,"abstract":"In this paper we propose a multiscale method for the acoustic wave equation in highly oscillatory media. We use a higher order extension of the localized orthogonal decomposition method combined with a higher order time stepping scheme and present rigorous a priori error estimates in the energy-induced norm. We find that in the very general setting without additional assumptions on the coefficient beyond boundedness arbitrary orders of convergence cannot be expected, but that increasing the polynomial degree may still considerably reduce the size of the error. Under additional regularity assumptions higher orders can be obtained as well. Numerical examples are presented that confirm the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a multiscale method for the acoustic wave equation in highly oscillatory media. We use a higher order extension of the localized orthogonal decomposition method combined with a higher order time stepping scheme and present rigorous a priori error estimates in the energy-induced norm. We find that in the very general setting without additional assumptions on the coefficient beyond boundedness arbitrary orders of convergence cannot be expected, but that increasing the polynomial degree may still considerably reduce the size of the error. Under additional regularity assumptions higher orders can be obtained as well. Numerical examples are presented that confirm the theoretical results.
波方程的高阶多尺度方法
本文提出了高度振荡介质中声波方程的多尺度方法。我们将局部正交分解法的高阶扩展与高阶时间步进方案相结合,并在能量诱导规范中提出了严格的先验误差估计。我们发现,在非常一般的情况下,如果不对系数进行超出有界性的额外假设,就无法实现任意阶收敛,但增加多项式阶数仍可大大减小误差。在额外的正则假设条件下,也可以获得更高的阶数。文中给出的数值示例证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信