Active RIS-Aided NOMA-Enabled Space- Air-Ground Integrated Networks With Cognitive Radio

Junjie Li;Liang Yang;Qingqing Wu;Xianfu Lei;Fuhui Zhou;Feng Shu;Xidong Mu;Yuanwei Liu;Pingzhi Fan
{"title":"Active RIS-Aided NOMA-Enabled Space- Air-Ground Integrated Networks With Cognitive Radio","authors":"Junjie Li;Liang Yang;Qingqing Wu;Xianfu Lei;Fuhui Zhou;Feng Shu;Xidong Mu;Yuanwei Liu;Pingzhi Fan","doi":"10.1109/JSAC.2024.3460067","DOIUrl":null,"url":null,"abstract":"In this work, we investigate an active reconfigurable intelligent surface (RIS)-aided non-orthogonal multiple access (NOMA)-enabled space-air-ground integrated network (SAGIN) with cognitive radio, leveraging the flexible deployment of an unmanned aerial vehicle (UAV) and the ubiquitous coverage of satellite networks. The UAV serves uplink and downlink users in the secondary network via NOMA and time division multiple access mechanisms, respectively, while satellites provide wireless backhaul for the UAV and primary users. We aim to maximize the weighted sum mean rate and energy efficiency for the secondary network by jointly the optimizing power allocation, the RIS reflection coefficients (RC), the user matching factors, and the UAV trajectory. We propose an alternating optimization framework based on the block coordinate ascent (BCA) technique, which decouples the problem into multiple variable blocks for alternating optimization until convergence. Moreover, we investigate the performance of energy-efficient active RIS with a sub-connected architecture, decoupling the RIS RC optimization into amplification factor and phase shift subproblems to be solved separately. Finally, simulation results validate the effectiveness of the proposed schemes, and demonstrate weakness of passive RIS and rationality and economics of sub-connected active RIS architecture.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 1","pages":"314-333"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685064/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate an active reconfigurable intelligent surface (RIS)-aided non-orthogonal multiple access (NOMA)-enabled space-air-ground integrated network (SAGIN) with cognitive radio, leveraging the flexible deployment of an unmanned aerial vehicle (UAV) and the ubiquitous coverage of satellite networks. The UAV serves uplink and downlink users in the secondary network via NOMA and time division multiple access mechanisms, respectively, while satellites provide wireless backhaul for the UAV and primary users. We aim to maximize the weighted sum mean rate and energy efficiency for the secondary network by jointly the optimizing power allocation, the RIS reflection coefficients (RC), the user matching factors, and the UAV trajectory. We propose an alternating optimization framework based on the block coordinate ascent (BCA) technique, which decouples the problem into multiple variable blocks for alternating optimization until convergence. Moreover, we investigate the performance of energy-efficient active RIS with a sub-connected architecture, decoupling the RIS RC optimization into amplification factor and phase shift subproblems to be solved separately. Finally, simulation results validate the effectiveness of the proposed schemes, and demonstrate weakness of passive RIS and rationality and economics of sub-connected active RIS architecture.
采用认知无线电的有源 RIS 辅助 NOMA 支持的空地一体化网络
在这项工作中,我们研究了一个具有认知无线电的主动可重构智能表面(RIS)辅助非正交多址(NOMA)支持的空地综合网络(SAGIN),利用无人机(UAV)的灵活部署和卫星网络的无处不在的覆盖。无人机分别通过NOMA和时分多址机制为辅助网络中的上行链路和下行链路用户提供服务,而卫星为无人机和主要用户提供无线回程。通过优化功率分配、RIS反射系数(RC)、用户匹配因子和无人机轨迹,实现二次网络加权和平均速率和能效的最大化。提出了一种基于块坐标上升(BCA)技术的交替优化框架,将问题解耦为多个变量块进行交替优化直至收敛。此外,我们还研究了具有子连接结构的节能有源RIS的性能,将RIS RC优化解耦为放大因子和相移子问题,分别进行求解。最后,仿真结果验证了所提方案的有效性,并验证了被动RIS的弱点和子连接主动RIS架构的合理性和经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信