Neural downscaling for complex systems: from large-scale to small-scale by neural operator

IF 5.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Pengyu Lai, Jing Wang, Rui Wang, Dewu Yang, Haoqi Fei, Yihe Chen, Hui Xu
{"title":"Neural downscaling for complex systems: from large-scale to small-scale by neural operator","authors":"Pengyu Lai, Jing Wang, Rui Wang, Dewu Yang, Haoqi Fei, Yihe Chen, Hui Xu","doi":"10.1080/19942060.2024.2399672","DOIUrl":null,"url":null,"abstract":"Researchers have long been working on interpreting and predicting the dynamics of complex systems in various fields. Conventional methods including full-scale simulations and reduced-order models a...","PeriodicalId":50524,"journal":{"name":"Engineering Applications of Computational Fluid Mechanics","volume":"28 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Computational Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19942060.2024.2399672","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have long been working on interpreting and predicting the dynamics of complex systems in various fields. Conventional methods including full-scale simulations and reduced-order models a...
复杂系统的神经降尺度:通过神经算子从大尺度到小尺度
长期以来,研究人员一直致力于解释和预测各领域复杂系统的动态。包括全尺度模拟和降阶模型在内的传统方法都无法对复杂系统的动力学进行解释和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Computational Fluid Mechanics
Engineering Applications of Computational Fluid Mechanics ENGINEERING, MULTIDISCIPLINARY-ENGINEERING, MECHANICAL
CiteScore
10.60
自引率
14.80%
发文量
109
审稿时长
3.4 months
期刊介绍: The aim of Engineering Applications of Computational Fluid Mechanics is a continuous and timely dissemination of innovative, practical and industrial applications of computational techniques to solve the whole range of hitherto intractable fluid mechanics problems. The journal is a truly interdisciplinary forum and publishes original contributions on the latest advances in numerical methods in fluid mechanics and their applications to various engineering fields including aeronautic, civil, environmental, hydraulic and mechanical. The journal has a distinctive and balanced international contribution, with emphasis on papers addressing practical problem-solving by means of robust numerical techniques to generate precise flow prediction and optimum design, and those fostering the thorough understanding of the physics of fluid motion. It is an open access journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信