Accurate backside boundary recognition of girth weld beads

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Haibo Liu , Tian Lan , Te Li , Jingchao Ai , Yongqing Wang , Yu Sun
{"title":"Accurate backside boundary recognition of girth weld beads","authors":"Haibo Liu ,&nbsp;Tian Lan ,&nbsp;Te Li ,&nbsp;Jingchao Ai ,&nbsp;Yongqing Wang ,&nbsp;Yu Sun","doi":"10.1016/j.rcim.2024.102880","DOIUrl":null,"url":null,"abstract":"<div><p>Visual recognition of weld beads is essential for post-weld robotic grinding. The recognition of thin-walled weld bead boundary, especially the backside boundary, remains challenging due to the diverse features such as debris, misalignment, and deformation. Based on point cloud from a laser scanner, we present a robust and accurate backside boundary recognition method for girth weld beads of thin-walled pipes. A boundary point extraction method is designed based on an adaptive sliding window model. Without prior morphology features, the influence of misalignment and deformation on the accuracy of boundary point recognition is greatly reduced by the local model matching strategy. Leveraging the correlation among overall weld bead features, an anomalous boundary point recognition and correction method based on DBSCAN clustering is proposed to further enhance robustness. A series of validation experiments were conducted by the obtained backside point cloud data inside a girth weld pipe, and our proposed method showed a high accuracy and a high robustness to misalignment, deformation and debris features.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102880"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001674","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Visual recognition of weld beads is essential for post-weld robotic grinding. The recognition of thin-walled weld bead boundary, especially the backside boundary, remains challenging due to the diverse features such as debris, misalignment, and deformation. Based on point cloud from a laser scanner, we present a robust and accurate backside boundary recognition method for girth weld beads of thin-walled pipes. A boundary point extraction method is designed based on an adaptive sliding window model. Without prior morphology features, the influence of misalignment and deformation on the accuracy of boundary point recognition is greatly reduced by the local model matching strategy. Leveraging the correlation among overall weld bead features, an anomalous boundary point recognition and correction method based on DBSCAN clustering is proposed to further enhance robustness. A series of validation experiments were conducted by the obtained backside point cloud data inside a girth weld pipe, and our proposed method showed a high accuracy and a high robustness to misalignment, deformation and debris features.

准确识别环缝焊珠背面边界
焊珠的视觉识别对于焊后机器人打磨至关重要。由于存在碎屑、错位和变形等多种特征,薄壁焊珠边界(尤其是背面边界)的识别仍具有挑战性。基于激光扫描仪的点云,我们提出了一种稳健、准确的薄壁管道环缝焊缝背面边界识别方法。我们设计了一种基于自适应滑动窗口模型的边界点提取方法。在没有先验形态特征的情况下,局部模型匹配策略大大降低了错位和变形对边界点识别准确性的影响。利用整体焊珠特征之间的相关性,提出了一种基于 DBSCAN 聚类的异常边界点识别和修正方法,以进一步提高鲁棒性。我们利用获得的环缝焊管内背面点云数据进行了一系列验证实验,结果表明我们提出的方法具有较高的准确性,并且对错位、变形和碎片特征具有较高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Computer-integrated Manufacturing
Robotics and Computer-integrated Manufacturing 工程技术-工程:制造
CiteScore
24.10
自引率
13.50%
发文量
160
审稿时长
50 days
期刊介绍: The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信