Milan Jain, Nicolas Bohm Agostini, Sayan Ghosh, Antonino Tumeo
{"title":"Analyzing inference workloads for spatiotemporal modeling","authors":"Milan Jain, Nicolas Bohm Agostini, Sayan Ghosh, Antonino Tumeo","doi":"10.1016/j.future.2024.107513","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring power grid resiliency, forecasting climate conditions, and optimization of transportation infrastructure are some of the many application areas where data is collected in both space and time. Spatiotemporal modeling is about modeling those patterns for forecasting future trends and carrying out critical decision-making by leveraging machine learning/deep learning. Once trained offline, field deployment of trained models for near real-time inference could be challenging because performance can vary significantly depending on the environment, available compute resources and tolerance to ambiguity in results. Users deploying spatiotemporal models for solving complex problems can benefit from analytical studies considering a plethora of system adaptations to understand the associated performance-quality trade-offs.</p><p>To facilitate the co-design of next-generation hardware architectures for field deployment of trained models, it is critical to characterize the workloads of these deep learning (DL) applications during inference and assess their computational patterns at different levels of the execution stack. In this paper, we develop several variants of deep learning applications that use spatiotemporal data from dynamical systems. We study the associated computational patterns for inference workloads at different levels, considering relevant models (Long short-term Memory, Convolutional Neural Network and Spatio-Temporal Graph Convolution Network), DL frameworks (Tensorflow and PyTorch), precision (FP16, FP32, AMP, INT16 and INT8), inference runtime (ONNX and AI Template), post-training quantization (TensorRT) and platforms (Nvidia DGX A100 and Sambanova SN10 RDU).</p><p>Overall, our findings indicate that although there is potential in mixed-precision models and post-training quantization for spatiotemporal modeling, extracting efficiency from contemporary GPU systems might be challenging. Instead, co-designing custom accelerators by leveraging optimized High Level Synthesis frameworks (such as SODA High-Level Synthesizer for customized FPGA/ASIC targets) can make workload-specific adjustments to enhance the efficiency.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"163 ","pages":"Article 107513"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24004771","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring power grid resiliency, forecasting climate conditions, and optimization of transportation infrastructure are some of the many application areas where data is collected in both space and time. Spatiotemporal modeling is about modeling those patterns for forecasting future trends and carrying out critical decision-making by leveraging machine learning/deep learning. Once trained offline, field deployment of trained models for near real-time inference could be challenging because performance can vary significantly depending on the environment, available compute resources and tolerance to ambiguity in results. Users deploying spatiotemporal models for solving complex problems can benefit from analytical studies considering a plethora of system adaptations to understand the associated performance-quality trade-offs.
To facilitate the co-design of next-generation hardware architectures for field deployment of trained models, it is critical to characterize the workloads of these deep learning (DL) applications during inference and assess their computational patterns at different levels of the execution stack. In this paper, we develop several variants of deep learning applications that use spatiotemporal data from dynamical systems. We study the associated computational patterns for inference workloads at different levels, considering relevant models (Long short-term Memory, Convolutional Neural Network and Spatio-Temporal Graph Convolution Network), DL frameworks (Tensorflow and PyTorch), precision (FP16, FP32, AMP, INT16 and INT8), inference runtime (ONNX and AI Template), post-training quantization (TensorRT) and platforms (Nvidia DGX A100 and Sambanova SN10 RDU).
Overall, our findings indicate that although there is potential in mixed-precision models and post-training quantization for spatiotemporal modeling, extracting efficiency from contemporary GPU systems might be challenging. Instead, co-designing custom accelerators by leveraging optimized High Level Synthesis frameworks (such as SODA High-Level Synthesizer for customized FPGA/ASIC targets) can make workload-specific adjustments to enhance the efficiency.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.