{"title":"Drug response-based precision therapeutic selection for tamoxifen-resistant triple-positive breast cancer","authors":"Vinod S. Bisht , Deepak Kumar , Mohd Altaf Najar , Kuldeep Giri , Jaismeen Kaur , Thottethodi Subrahmanya Keshava Prasad , Kiran Ambatipudi","doi":"10.1016/j.jprot.2024.105319","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer adaptability to the drug environment reduces the chemotherapeutic response and facilitates acquired drug resistance. Cancer-specific therapeutics can be more effective against advanced-stage cancer than standard chemotherapeutics. To extend the paradigm of cancer-specific therapeutics, clinically relevant acquired tamoxifen-resistant MCF-7 proteome was deconstructed to identify possible druggable targets (<em>N</em> = 150). Twenty-eight drug inhibitors were used against identified druggable targets to suppress non-resistant (NC) and resistant cells (RC). First, selected drugs were screened using growth-inhibitory response against NC and RC. Seven drugs were shortlisted for their time-dependent (10–12 days) cytotoxic effect and further narrowed to three effective drugs (e.g., cisplatin, doxorubicin, and hydroxychloroquine). The growth-suppressive effectiveness of selected drugs was validated in the complex spheroid model (progressive and regressive). In the progressive model, doxorubicin (RC: 83.64 %, NC: 54.81 %), followed by cisplatin (RC: 76.66 %, NC: 68.94 %) and hydroxychloroquine (RC: 68.70 %, NC: 61.78 %) showed a significant growth-suppressive effect. However, in fully grown regressive spheroid, after 4th drug treatment, cisplatin significantly suppressed RC (84.79 %) and NC (40.21 %), while doxorubicin and hydroxychloroquine significantly suppressed only RC (76.09 and 76.34 %). Our in-depth investigation effectively integrated the expression data with the cancer-specific therapeutic investigation. Furthermore, our three-step sequential drug-screening approach unbiasedly identified cisplatin, doxorubicin, and hydroxychloroquine as an efficacious drug to target heterogeneous cancer cell populations.</p></div><div><h3>Significance statement</h3><p>Hormonal-positive BC grows slowly, and hormonal-inhibitors effectively suppress the oncogenesis. However, development of drug-resistance not only reduces the drug-response but also increases the chance of BC aggressiveness. Further, alternative chemotherapeutics are widely used to control advanced-stage BC. In contrast, we hypothesized that, compared to standard chemotherapeutics, cancer-specific drugs can be more effective against resistant-cancer. Although cancer-specific treatment identification is an uphill battle, our work shows proteome data can be used for drug selection. We identified multiple druggable targets and, using ex-vivo methods narrowed multiple drugs to disease-condition-specific therapeutics. We consider that our investigation successfully interconnected the expression data with the functional disease-specific therapeutic investigation and selected drugs can be used for effective resistant treatment with higher therapeutic response.</p></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":"310 ","pages":"Article 105319"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874391924002513/pdfft?md5=b8fd894e3cc744d22eedc45bed0e8399&pid=1-s2.0-S1874391924002513-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391924002513","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer adaptability to the drug environment reduces the chemotherapeutic response and facilitates acquired drug resistance. Cancer-specific therapeutics can be more effective against advanced-stage cancer than standard chemotherapeutics. To extend the paradigm of cancer-specific therapeutics, clinically relevant acquired tamoxifen-resistant MCF-7 proteome was deconstructed to identify possible druggable targets (N = 150). Twenty-eight drug inhibitors were used against identified druggable targets to suppress non-resistant (NC) and resistant cells (RC). First, selected drugs were screened using growth-inhibitory response against NC and RC. Seven drugs were shortlisted for their time-dependent (10–12 days) cytotoxic effect and further narrowed to three effective drugs (e.g., cisplatin, doxorubicin, and hydroxychloroquine). The growth-suppressive effectiveness of selected drugs was validated in the complex spheroid model (progressive and regressive). In the progressive model, doxorubicin (RC: 83.64 %, NC: 54.81 %), followed by cisplatin (RC: 76.66 %, NC: 68.94 %) and hydroxychloroquine (RC: 68.70 %, NC: 61.78 %) showed a significant growth-suppressive effect. However, in fully grown regressive spheroid, after 4th drug treatment, cisplatin significantly suppressed RC (84.79 %) and NC (40.21 %), while doxorubicin and hydroxychloroquine significantly suppressed only RC (76.09 and 76.34 %). Our in-depth investigation effectively integrated the expression data with the cancer-specific therapeutic investigation. Furthermore, our three-step sequential drug-screening approach unbiasedly identified cisplatin, doxorubicin, and hydroxychloroquine as an efficacious drug to target heterogeneous cancer cell populations.
Significance statement
Hormonal-positive BC grows slowly, and hormonal-inhibitors effectively suppress the oncogenesis. However, development of drug-resistance not only reduces the drug-response but also increases the chance of BC aggressiveness. Further, alternative chemotherapeutics are widely used to control advanced-stage BC. In contrast, we hypothesized that, compared to standard chemotherapeutics, cancer-specific drugs can be more effective against resistant-cancer. Although cancer-specific treatment identification is an uphill battle, our work shows proteome data can be used for drug selection. We identified multiple druggable targets and, using ex-vivo methods narrowed multiple drugs to disease-condition-specific therapeutics. We consider that our investigation successfully interconnected the expression data with the functional disease-specific therapeutic investigation and selected drugs can be used for effective resistant treatment with higher therapeutic response.
期刊介绍:
Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics.
Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.