{"title":"An innovative approach to 2D localization using the magnetic shielding effect","authors":"Kiera Montgomery, Kean Chin Aw","doi":"10.1016/j.sna.2024.115910","DOIUrl":null,"url":null,"abstract":"<div><p>The effect on an electromagnetic field when a low-cost magnetically permeable object such as copper or aluminum is placed within it can be observed to determine the object’s location. This approach offers a novel technique to achieve reliable localization, particularly in environments where line of sight sensing methods may be non-applicable. Shields up to a size of 30×30 mm and a thickness of 80 µm were investigated; copper shields of these dimensions reduced the signal strength to 91 %, and aluminum shields reduced the signal strength to 94 % of its initial strength. The distortions to the electromagnetic field were closely related to the location of the tag. By fitting an inverted Gaussian curve to each sensor’s data, the position of a shield along a line could be predicted. This method can be used to locate a tag within a 2D plane by creating a 2D array of sensors beneath the sensing plane.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092442472400904X/pdfft?md5=81229dc7789e6cc4acfb12858fcb0957&pid=1-s2.0-S092442472400904X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092442472400904X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effect on an electromagnetic field when a low-cost magnetically permeable object such as copper or aluminum is placed within it can be observed to determine the object’s location. This approach offers a novel technique to achieve reliable localization, particularly in environments where line of sight sensing methods may be non-applicable. Shields up to a size of 30×30 mm and a thickness of 80 µm were investigated; copper shields of these dimensions reduced the signal strength to 91 %, and aluminum shields reduced the signal strength to 94 % of its initial strength. The distortions to the electromagnetic field were closely related to the location of the tag. By fitting an inverted Gaussian curve to each sensor’s data, the position of a shield along a line could be predicted. This method can be used to locate a tag within a 2D plane by creating a 2D array of sensors beneath the sensing plane.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.