Network traffic prediction based on PSO-LightGBM-TM

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Feng Li , Wei Nie , Kwok-Yan Lam , Li Wang
{"title":"Network traffic prediction based on PSO-LightGBM-TM","authors":"Feng Li ,&nbsp;Wei Nie ,&nbsp;Kwok-Yan Lam ,&nbsp;Li Wang","doi":"10.1016/j.comnet.2024.110810","DOIUrl":null,"url":null,"abstract":"<div><p>Network traffic prediction is critical in wireless network management by allowing a good estimate of the traffic trend, which is also an important approach for detecting traffic anomalies in order to enhance network security. Deep-learning-based method has been widely adopted to predict network traffic matrix (TM) though with the main drawbacks in high complexity and low efficiency. In this paper, we propose a traffic prediction model based on Particle Swarm Optimization (PSO) and LightGBM (PSO-LightGBM-TM), which optimizes the LightGBM parameters for each network flow by PSO so that LightGBM can adapt to each of the network traffic flow. Compared with existing commonly used deep learning models, our model has a more straightforward structure and yet outperforms existing deep learning models. Sufficient comparison tests on three real network traffic datasets, Abilene, GÉANT, and CERNET have been conducted, and the results show that our model provides more accurate results and higher prediction efficiency.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"254 ","pages":"Article 110810"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138912862400642X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Network traffic prediction is critical in wireless network management by allowing a good estimate of the traffic trend, which is also an important approach for detecting traffic anomalies in order to enhance network security. Deep-learning-based method has been widely adopted to predict network traffic matrix (TM) though with the main drawbacks in high complexity and low efficiency. In this paper, we propose a traffic prediction model based on Particle Swarm Optimization (PSO) and LightGBM (PSO-LightGBM-TM), which optimizes the LightGBM parameters for each network flow by PSO so that LightGBM can adapt to each of the network traffic flow. Compared with existing commonly used deep learning models, our model has a more straightforward structure and yet outperforms existing deep learning models. Sufficient comparison tests on three real network traffic datasets, Abilene, GÉANT, and CERNET have been conducted, and the results show that our model provides more accurate results and higher prediction efficiency.

基于 PSO-LightGBM-TM 的网络流量预测
网络流量预测是无线网络管理的关键,它可以很好地估计流量趋势,也是检测流量异常以加强网络安全的重要方法。基于深度学习的方法已被广泛用于预测网络流量矩阵(TM),但其主要缺点是复杂度高、效率低。本文提出了一种基于粒子群优化(PSO)和LightGBM的流量预测模型(PSO-LightGBM-TM),通过PSO优化每个网络流量的LightGBM参数,使LightGBM能够适应每个网络流量。与现有的常用深度学习模型相比,我们的模型结构更简单,但性能却优于现有的深度学习模型。我们在 Abilene、GÉANT 和 CERNET 三个真实网络流量数据集上进行了充分的对比测试,结果表明我们的模型能提供更准确的结果和更高的预测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信