{"title":"IPNet: An Interpretable Network With Progressive Loss for Whole-Stage Colorectal Disease Diagnosis","authors":"Junhu Fu;Ke Chen;Qi Dou;Yun Gao;Yiping He;Pinghong Zhou;Shengli Lin;Yuanyuan Wang;Yi Guo","doi":"10.1109/TMI.2024.3459910","DOIUrl":null,"url":null,"abstract":"Colorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation. In addition, interpretable algorithms explaining the lesion progression are still lacking, making the prediction process a “black box”. In this paper, we propose IPNet, a dual-branch interpretable network with progressive loss for whole-stage colorectal disease diagnosis. The dual-branch architecture captures unbiased features representing diverse localities to suppress intra-class variation. The progressive loss function considers inter-class relationship, using prior knowledge of disease evolution to guide classification. Furthermore, a novel Grain-CAM is designed to interpret IPNet by visualizing pixel-wise attention maps from shallow to deep layers, providing regions semantically related to IPNet’s progressive classification. We conducted whole-stage diagnosis on two image modalities, i.e., colorectal lesion classification on 129,893 endoscopic optical images and rectal tumor T-staging on 11,072 endoscopic ultrasound images. IPNet is shown to surpass other state-of-the-art algorithms, accordingly achieving an accuracy of 93.15% and 89.62%. Especially, it establishes effective decision boundaries for challenges like polyp vs. adenoma and T2 vs. T3. The results demonstrate an explainable attempt for colorectal lesion classification at a whole-stage level, and rectal tumor T-staging by endoscopic ultrasound is also unprecedentedly explored. IPNet is expected to be further applied, assisting physicians in whole-stage disease diagnosis and enhancing diagnostic interpretability.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"789-800"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation. In addition, interpretable algorithms explaining the lesion progression are still lacking, making the prediction process a “black box”. In this paper, we propose IPNet, a dual-branch interpretable network with progressive loss for whole-stage colorectal disease diagnosis. The dual-branch architecture captures unbiased features representing diverse localities to suppress intra-class variation. The progressive loss function considers inter-class relationship, using prior knowledge of disease evolution to guide classification. Furthermore, a novel Grain-CAM is designed to interpret IPNet by visualizing pixel-wise attention maps from shallow to deep layers, providing regions semantically related to IPNet’s progressive classification. We conducted whole-stage diagnosis on two image modalities, i.e., colorectal lesion classification on 129,893 endoscopic optical images and rectal tumor T-staging on 11,072 endoscopic ultrasound images. IPNet is shown to surpass other state-of-the-art algorithms, accordingly achieving an accuracy of 93.15% and 89.62%. Especially, it establishes effective decision boundaries for challenges like polyp vs. adenoma and T2 vs. T3. The results demonstrate an explainable attempt for colorectal lesion classification at a whole-stage level, and rectal tumor T-staging by endoscopic ultrasound is also unprecedentedly explored. IPNet is expected to be further applied, assisting physicians in whole-stage disease diagnosis and enhancing diagnostic interpretability.