C. S. Cockell, G. S. Collins, S. Basu, E. Grant, S. McMahon
{"title":"Martian Impact Fracturing Pervasively Influences Habitability","authors":"C. S. Cockell, G. S. Collins, S. Basu, E. Grant, S. McMahon","doi":"10.1029/2023JE008116","DOIUrl":null,"url":null,"abstract":"<p>On Mars, the lack of either plate tectonics or a prominent erosional hydrological cycle since the Noachian means geological changes caused by asteroid and comet impact events have been preserved. On Earth, surviving impact-induced fractures are localized to the relatively few preserved craters on the planet. We estimate that the shell of impact-fractured rock on Mars (the “impact-sphere”) could provide between 9,200 times the surface area of a Mars radius sphere and up to 100 times this value, depending on the assumptions made, as potential microbially accessible space. Although >93% of craters we consider are smaller than 10 km in diameter, they contribute only about 5% of the total fracture surface area generated by all craters, making complex craters the dominant process for potential habitat formation. Microbiological data from terrestrial impact craters suggest that these fractures could have significantly enhanced local habitability by providing pathways for fluid flow, and thus nutrients and energy. However, unlike on Earth, the geological history of Mars means that pervasive impact fractures may also have provided pathways for Hesperian and Amazonian brines to infiltrate the subsurface and locally reduce habitability. Combining the fracture data with previous microbiological observations provides testable hypotheses for Martian drilling missions.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008116","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
On Mars, the lack of either plate tectonics or a prominent erosional hydrological cycle since the Noachian means geological changes caused by asteroid and comet impact events have been preserved. On Earth, surviving impact-induced fractures are localized to the relatively few preserved craters on the planet. We estimate that the shell of impact-fractured rock on Mars (the “impact-sphere”) could provide between 9,200 times the surface area of a Mars radius sphere and up to 100 times this value, depending on the assumptions made, as potential microbially accessible space. Although >93% of craters we consider are smaller than 10 km in diameter, they contribute only about 5% of the total fracture surface area generated by all craters, making complex craters the dominant process for potential habitat formation. Microbiological data from terrestrial impact craters suggest that these fractures could have significantly enhanced local habitability by providing pathways for fluid flow, and thus nutrients and energy. However, unlike on Earth, the geological history of Mars means that pervasive impact fractures may also have provided pathways for Hesperian and Amazonian brines to infiltrate the subsurface and locally reduce habitability. Combining the fracture data with previous microbiological observations provides testable hypotheses for Martian drilling missions.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.