{"title":"A Hybrid Convolutional Neural Network Model for the Classification of Multi-Class Skin Cancer","authors":"Ahmet Nusret Toprak, Ibrahim Aruk","doi":"10.1002/ima.23180","DOIUrl":null,"url":null,"abstract":"<p>Skin cancer is a significant public health issue, making accurate and early diagnosis crucial. This study proposes a novel and efficient hybrid deep-learning model for accurate skin cancer diagnosis. The model first employs DeepLabV3+ for precise segmentation of skin lesions in dermoscopic images. Feature extraction is then carried out using three pretrained models: MobileNetV2, EfficientNetB0, and DenseNet201 to ensure balanced performance and robust feature learning. These extracted features are then concatenated, and the ReliefF algorithm is employed to select the most relevant features. Finally, obtained features are classified into eight categories: actinic keratosis, basal cell carcinoma, benign keratosis, dermatofibroma, melanoma, melanocytic nevus, squamous cell carcinoma, and vascular lesion using the kNN algorithm. The proposed model achieves an <i>F</i>1 score of 93.49% and an accuracy of 94.42% on the ISIC-2019 dataset, surpassing the best individual model, EfficientNetB0, by 1.20%. Furthermore, the evaluation of the PH2 dataset yielded an <i>F</i>1 score of 94.43% and an accuracy of 94.44%, confirming its generalizability. These findings signify the potential of the proposed model as an expedient, accurate, and valuable tool for early skin cancer detection. They also indicate combining different CNN models achieves superior results over the results obtained from individual models.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.23180","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23180","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer is a significant public health issue, making accurate and early diagnosis crucial. This study proposes a novel and efficient hybrid deep-learning model for accurate skin cancer diagnosis. The model first employs DeepLabV3+ for precise segmentation of skin lesions in dermoscopic images. Feature extraction is then carried out using three pretrained models: MobileNetV2, EfficientNetB0, and DenseNet201 to ensure balanced performance and robust feature learning. These extracted features are then concatenated, and the ReliefF algorithm is employed to select the most relevant features. Finally, obtained features are classified into eight categories: actinic keratosis, basal cell carcinoma, benign keratosis, dermatofibroma, melanoma, melanocytic nevus, squamous cell carcinoma, and vascular lesion using the kNN algorithm. The proposed model achieves an F1 score of 93.49% and an accuracy of 94.42% on the ISIC-2019 dataset, surpassing the best individual model, EfficientNetB0, by 1.20%. Furthermore, the evaluation of the PH2 dataset yielded an F1 score of 94.43% and an accuracy of 94.44%, confirming its generalizability. These findings signify the potential of the proposed model as an expedient, accurate, and valuable tool for early skin cancer detection. They also indicate combining different CNN models achieves superior results over the results obtained from individual models.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.