{"title":"Automated grounding line delineation using deep learning and phase gradient-based approaches on COSMO-SkyMed DInSAR data","authors":"Natalya Ross , Pietro Milillo , Luigi Dini","doi":"10.1016/j.rse.2024.114429","DOIUrl":null,"url":null,"abstract":"<div><p>The grounding line marks the transition between a glacier's floating and grounded parts and serves as a crucial parameter for monitoring sea level changes and assessing glacier retreat. The Differential Interferometric Synthetic Aperture Radar (DInSAR) technique for grounding line mapping currently requires the involvement of human experts, which becomes challenging with the continuously growing volume of grounding line data available for every Antarctic glacier. While a deep learning approach has been recently proposed for mapping grounding lines over C-band Sentinel-1 DInSAR data, its effectiveness has not been assessed over X-Band COSMO-SkyMed DInSAR data. Similarly, the applicability of an analytical algorithm developed for X-band TerraSAR-X DInSAR data has not been evaluated over a large diverse dataset. Here we apply both techniques to map grounding lines over a large X-band COSMO-SkyMed DInSAR dataset from 2020 to 2022, covering Stancomb-Wills, Veststraumen, Jutulstraumen, Moscow University, and Rennick Antarctic glaciers. We determine strengths and limitations of each algorithm, compare their performance with manual mapping and provide recommendations for choosing appropriate data processing methods for effective grounding line mapping. We also note that since 1996, Moscow University glacier's main trunk was retreating at a rate of 340 ± 80 m/year, while the other four glaciers experienced no retreat. Considering the grounding zone widths, which represent the difference between the high and low tide grounding line positions during a tidal cycle, we detect a grounding zone of 9.7 km over Veststraumen Glacier, which is almost six times larger than the average grounding zone of the other four glaciers.</p></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114429"},"PeriodicalIF":11.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004553","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The grounding line marks the transition between a glacier's floating and grounded parts and serves as a crucial parameter for monitoring sea level changes and assessing glacier retreat. The Differential Interferometric Synthetic Aperture Radar (DInSAR) technique for grounding line mapping currently requires the involvement of human experts, which becomes challenging with the continuously growing volume of grounding line data available for every Antarctic glacier. While a deep learning approach has been recently proposed for mapping grounding lines over C-band Sentinel-1 DInSAR data, its effectiveness has not been assessed over X-Band COSMO-SkyMed DInSAR data. Similarly, the applicability of an analytical algorithm developed for X-band TerraSAR-X DInSAR data has not been evaluated over a large diverse dataset. Here we apply both techniques to map grounding lines over a large X-band COSMO-SkyMed DInSAR dataset from 2020 to 2022, covering Stancomb-Wills, Veststraumen, Jutulstraumen, Moscow University, and Rennick Antarctic glaciers. We determine strengths and limitations of each algorithm, compare their performance with manual mapping and provide recommendations for choosing appropriate data processing methods for effective grounding line mapping. We also note that since 1996, Moscow University glacier's main trunk was retreating at a rate of 340 ± 80 m/year, while the other four glaciers experienced no retreat. Considering the grounding zone widths, which represent the difference between the high and low tide grounding line positions during a tidal cycle, we detect a grounding zone of 9.7 km over Veststraumen Glacier, which is almost six times larger than the average grounding zone of the other four glaciers.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.