B. Lothenbach , L. Nedyalkova , E. Wieland , U. Mäder , H. Rojo , J. Tits
{"title":"Sorption of Se(VI) and Se(IV) on AFm phases","authors":"B. Lothenbach , L. Nedyalkova , E. Wieland , U. Mäder , H. Rojo , J. Tits","doi":"10.1016/j.apgeochem.2024.106177","DOIUrl":null,"url":null,"abstract":"<div><p>Selenate and selenite can sorb on AFm phases such as monosulfate, monocarbonate or hemicarbonate. Sorption and co-precipitation experiments were performed to determine their potential for the immobilization of two of the main aqueous species of selenium: Se<sup>VI</sup>O<sub>4</sub><sup>2−</sup> and Se<sup>IV</sup>O<sub>3</sub><sup>2−</sup>. A preferential uptake by hemicarbonate over monosulfate, and a much weaker sorption on monocarbonate was observed for both Se(IV) and Se(VI). Increased sulfate and carbonate concentrations as present at higher pH lowered the uptake of Se(VI) and Se(IV).</p><p>Experimentally obtained sorption isotherms on hemicarbonate and monosulfate were reproduced with thermodynamic solid solution models, considering both surface sorption and interlayer bonding. For monocarbonate interlayer sorption was suppressed by the rigid structure and narrow interlayer distance. The observed limited uptake could be described by an anion exchange model on the outer surfaces only. This study shows that both anion exchange in the interlayer as well as sorption on outer surface sites can determine Se uptake by AFm phases.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"175 ","pages":"Article 106177"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0883292724002828/pdfft?md5=45da9cb467efc51745f3ca199765bef5&pid=1-s2.0-S0883292724002828-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724002828","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Selenate and selenite can sorb on AFm phases such as monosulfate, monocarbonate or hemicarbonate. Sorption and co-precipitation experiments were performed to determine their potential for the immobilization of two of the main aqueous species of selenium: SeVIO42− and SeIVO32−. A preferential uptake by hemicarbonate over monosulfate, and a much weaker sorption on monocarbonate was observed for both Se(IV) and Se(VI). Increased sulfate and carbonate concentrations as present at higher pH lowered the uptake of Se(VI) and Se(IV).
Experimentally obtained sorption isotherms on hemicarbonate and monosulfate were reproduced with thermodynamic solid solution models, considering both surface sorption and interlayer bonding. For monocarbonate interlayer sorption was suppressed by the rigid structure and narrow interlayer distance. The observed limited uptake could be described by an anion exchange model on the outer surfaces only. This study shows that both anion exchange in the interlayer as well as sorption on outer surface sites can determine Se uptake by AFm phases.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.