Indu Baiju , Mukesh Kumar Bharti , Anjali Somal , Sriti Pandey , Irfan A. Bhat , Anand Joseph , Vikash Chandra , G. Taru Sharma
{"title":"Exploration of immunomodulatory mechanism of caprine Wharton’s jelly derived mesenchymal stem cells","authors":"Indu Baiju , Mukesh Kumar Bharti , Anjali Somal , Sriti Pandey , Irfan A. Bhat , Anand Joseph , Vikash Chandra , G. Taru Sharma","doi":"10.1016/j.cellimm.2024.104879","DOIUrl":null,"url":null,"abstract":"<div><p>The present study was aimed to explore the possible mechanisms by which caprine Wharton’s jelly-derived MSCs (WJ-MSCs) perform their immunomodulatory function. WJ-MSCs were isolated through explants culture and characterized as per ISCT criteria using culture behavior, expression of surface markers by PCR, FACS and immunocytochemical localization (ICC), trilineage differentiation potential etc. Secretory behavior for important biomolecules (IDO, TGFβ1, VEGF, IL6) was evaluated by ICC and western blot assay. Cell-to-cell communication was studied by culturing cells in cell–cell contact and <em>trans</em>-well system. The MSCs when co-cultured with activated Tc and Th cells, down-regulation of T cell cytokine as well as upregulation of immunomodulatory factors (VEGF A, IL10, IL6, IDO, iNOS, PTGS2, HGF, TGFβ, CXCL10, CXCL11) was noticed in both cell–cell contact and <em>trans</em>-well culture system which was significantly higher in cell–cell contact system. Trilineage differentiation of MSCs showed significant upregulation of MHC I (CAHI) and MHC II (CLA DRB3) molecules suggesting better clinical applications of MSCs without differentiation to avoid immune rejection. It can be concluded that WJ-MSCs perform their immunomodulation through the secretion of a battery of biomolecules and work in both cell–cell contact manner and through their secretome.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"405 ","pages":"Article 104879"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874924000820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was aimed to explore the possible mechanisms by which caprine Wharton’s jelly-derived MSCs (WJ-MSCs) perform their immunomodulatory function. WJ-MSCs were isolated through explants culture and characterized as per ISCT criteria using culture behavior, expression of surface markers by PCR, FACS and immunocytochemical localization (ICC), trilineage differentiation potential etc. Secretory behavior for important biomolecules (IDO, TGFβ1, VEGF, IL6) was evaluated by ICC and western blot assay. Cell-to-cell communication was studied by culturing cells in cell–cell contact and trans-well system. The MSCs when co-cultured with activated Tc and Th cells, down-regulation of T cell cytokine as well as upregulation of immunomodulatory factors (VEGF A, IL10, IL6, IDO, iNOS, PTGS2, HGF, TGFβ, CXCL10, CXCL11) was noticed in both cell–cell contact and trans-well culture system which was significantly higher in cell–cell contact system. Trilineage differentiation of MSCs showed significant upregulation of MHC I (CAHI) and MHC II (CLA DRB3) molecules suggesting better clinical applications of MSCs without differentiation to avoid immune rejection. It can be concluded that WJ-MSCs perform their immunomodulation through the secretion of a battery of biomolecules and work in both cell–cell contact manner and through their secretome.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.