Tongda Lei , Yongheng Wang , Yaya Feng , Xingru Duan , Qingsong Zhang , Ailan Wan , Zhaopeng Xia , Wan Shou , Jie Fan
{"title":"PNIPAA-based temperature responsive ionic conductive hydrogels for flexible strain and temperature sensing","authors":"Tongda Lei , Yongheng Wang , Yaya Feng , Xingru Duan , Qingsong Zhang , Ailan Wan , Zhaopeng Xia , Wan Shou , Jie Fan","doi":"10.1016/j.jcis.2024.09.131","DOIUrl":null,"url":null,"abstract":"<div><p>Conductive hydrogels have received much attention in the field of flexible wearable sensors due to their outstanding flexibility, conductivity, sensitivity and excellent compatibility. However, most conductive hydrogels mainly focus on strain sensors to detect human motion and lack other features such as temperature response. Herein, we prepared a strain and temperature dual responsive ionic conductive hydrogel (PPPNV) with an interpenetrating network structure by introducing a covalent crosslinked network of <em>N</em>-isopropylacrylamide (NIPAAm) and 1-vinyl-3-butylimidazolium bromide (VBIMBr) into the skeleton of the hydrogel composed of polyvinylalcohol (PVA) and polyvinylpyrrolidone (PVP). The PPPNV hydrogel exhibited excellent anti-freezing properties (−37.34 °C) and water retention with high stretchability (∼930 %) and excellent adhesion. As a wearable strain sensor, the PPPNV hydrogel has good responsiveness and stability to a wide range of deformations and exhibits high strain sensitivity (GF=2.6) as well as fast response time. It can detect large and subtle body movements with good signal stability. As wearable temperature sensors, PPPNV hydrogels can detect human physiological signals and respond to temperature changes, and the volumetric phase transition temperature (VPTT) can be easily controlled by adjusting the molar ratio of NIPAAm to VBIMBr. In addition, a bilayer temperature-sensitive hydrogel was prepared with the temperature responsive hydrogel by two-step synthesis, which shows great promising applications in temperature actuators.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"678 ","pages":"Pages 726-741"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724021969","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive hydrogels have received much attention in the field of flexible wearable sensors due to their outstanding flexibility, conductivity, sensitivity and excellent compatibility. However, most conductive hydrogels mainly focus on strain sensors to detect human motion and lack other features such as temperature response. Herein, we prepared a strain and temperature dual responsive ionic conductive hydrogel (PPPNV) with an interpenetrating network structure by introducing a covalent crosslinked network of N-isopropylacrylamide (NIPAAm) and 1-vinyl-3-butylimidazolium bromide (VBIMBr) into the skeleton of the hydrogel composed of polyvinylalcohol (PVA) and polyvinylpyrrolidone (PVP). The PPPNV hydrogel exhibited excellent anti-freezing properties (−37.34 °C) and water retention with high stretchability (∼930 %) and excellent adhesion. As a wearable strain sensor, the PPPNV hydrogel has good responsiveness and stability to a wide range of deformations and exhibits high strain sensitivity (GF=2.6) as well as fast response time. It can detect large and subtle body movements with good signal stability. As wearable temperature sensors, PPPNV hydrogels can detect human physiological signals and respond to temperature changes, and the volumetric phase transition temperature (VPTT) can be easily controlled by adjusting the molar ratio of NIPAAm to VBIMBr. In addition, a bilayer temperature-sensitive hydrogel was prepared with the temperature responsive hydrogel by two-step synthesis, which shows great promising applications in temperature actuators.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies