Chang-Lin Meng, Zhi-Jun Shuai, Lie-Yi Dong, Dong-Hua Wang, Wan-You Li
{"title":"Numerical study on propeller hydrodynamic excitation influenced by torsional vibration of shaft system","authors":"Chang-Lin Meng, Zhi-Jun Shuai, Lie-Yi Dong, Dong-Hua Wang, Wan-You Li","doi":"10.1016/j.jfluidstructs.2024.104190","DOIUrl":null,"url":null,"abstract":"<div><p>Torsional vibration of the propulsion shaft system has a significant influence on the safety and stability of marine navigation. Additionally, the resulting instantaneous fluctuation of rotational speed affects the hydrodynamic loading of propeller. To investigate this influence, a numerical model of propeller hydrodynamics influenced by hull wake and torsional vibration is established using delayed detached eddy simulation. First, the modeling method is described, and the model is verified and validated. Second, simulations are carried out for different amplitudes and frequencies of torsional vibration, and the hydrodynamic excitation, pressure pulsations and flow field features are analyzed detailly. The results show that torsional vibration significantly affects the hydrodynamic excitation of propeller, due to the fluctuations in blade section velocity, angle of attack and loading induced by instantaneous rotational speed, which can be equivalent to non-negligible added mass and damping. Through statistical analysis of the temporal-spatial pressure distribution, the complex modulation of torsional vibrations with different frequencies on the flow field from macroscopic hydrodynamic excitation to microscopic flow features is revealed. The effect of fluctuating small-amplitude loading on the dynamics and stability of propeller wake is also studied. This study provides theoretical support for designing and optimizing marine propellers and propulsion shaft systems.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001257","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Torsional vibration of the propulsion shaft system has a significant influence on the safety and stability of marine navigation. Additionally, the resulting instantaneous fluctuation of rotational speed affects the hydrodynamic loading of propeller. To investigate this influence, a numerical model of propeller hydrodynamics influenced by hull wake and torsional vibration is established using delayed detached eddy simulation. First, the modeling method is described, and the model is verified and validated. Second, simulations are carried out for different amplitudes and frequencies of torsional vibration, and the hydrodynamic excitation, pressure pulsations and flow field features are analyzed detailly. The results show that torsional vibration significantly affects the hydrodynamic excitation of propeller, due to the fluctuations in blade section velocity, angle of attack and loading induced by instantaneous rotational speed, which can be equivalent to non-negligible added mass and damping. Through statistical analysis of the temporal-spatial pressure distribution, the complex modulation of torsional vibrations with different frequencies on the flow field from macroscopic hydrodynamic excitation to microscopic flow features is revealed. The effect of fluctuating small-amplitude loading on the dynamics and stability of propeller wake is also studied. This study provides theoretical support for designing and optimizing marine propellers and propulsion shaft systems.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.