Christian Carrick , Michael A. Hill , Douglas C. Ravenel
{"title":"The homological slice spectral sequence in motivic and Real bordism","authors":"Christian Carrick , Michael A. Hill , Douglas C. Ravenel","doi":"10.1016/j.aim.2024.109955","DOIUrl":null,"url":null,"abstract":"<div><p>For a motivic spectrum <span><math><mi>E</mi><mo>∈</mo><mrow><mi>SH</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, let <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> denote the global sections spectrum, where <em>E</em> is viewed as a sheaf of spectra on <span><math><msub><mrow><mi>Sm</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span>. In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and study the case <span><math><mi>E</mi><mo>=</mo><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mi>m</mi><mo>〉</mo></math></span> for <span><math><mi>k</mi><mo>=</mo><mi>R</mi></math></span> in detail. We show that this spectral sequence contains the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>-comodule algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as permanent cycles, and we determine a family of differentials interpolating between <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Using this, we compute the spectral sequence completely for <span><math><mi>m</mi><mo>≤</mo><mn>3</mn></math></span>.</p><p>In the height 2 case, the Betti realization of <span><math><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span> is the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-spectrum <span><math><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span>, a form of which was shown by Hill and Meier to be an equivariant model for <span><math><msub><mrow><mi>tmf</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. Our spectral sequence therefore gives a computation of the comodule algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. As a consequence, we deduce a new (2-local) Wood-type splitting<span><span><span><math><mrow><mi>tmf</mi></mrow><mo>∧</mo><mi>X</mi><mo>≃</mo><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span></span></span> of tmf-modules predicted by Davis and Mahowald, for <em>X</em> a certain 10-cell complex.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109955"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004705/pdfft?md5=5881a17b5ae2bf26359dfa18561bd41c&pid=1-s2.0-S0001870824004705-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004705","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a motivic spectrum , let denote the global sections spectrum, where E is viewed as a sheaf of spectra on . Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of . In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of and study the case for in detail. We show that this spectral sequence contains the -comodule algebra as permanent cycles, and we determine a family of differentials interpolating between and . Using this, we compute the spectral sequence completely for .
In the height 2 case, the Betti realization of is the -spectrum , a form of which was shown by Hill and Meier to be an equivariant model for . Our spectral sequence therefore gives a computation of the comodule algebra . As a consequence, we deduce a new (2-local) Wood-type splitting of tmf-modules predicted by Davis and Mahowald, for X a certain 10-cell complex.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.