The homological slice spectral sequence in motivic and Real bordism

IF 1.5 1区 数学 Q1 MATHEMATICS
Christian Carrick , Michael A. Hill , Douglas C. Ravenel
{"title":"The homological slice spectral sequence in motivic and Real bordism","authors":"Christian Carrick ,&nbsp;Michael A. Hill ,&nbsp;Douglas C. Ravenel","doi":"10.1016/j.aim.2024.109955","DOIUrl":null,"url":null,"abstract":"<div><p>For a motivic spectrum <span><math><mi>E</mi><mo>∈</mo><mrow><mi>SH</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo></math></span>, let <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> denote the global sections spectrum, where <em>E</em> is viewed as a sheaf of spectra on <span><math><msub><mrow><mi>Sm</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span>. In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of <span><math><mi>Γ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> and study the case <span><math><mi>E</mi><mo>=</mo><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mi>m</mi><mo>〉</mo></math></span> for <span><math><mi>k</mi><mo>=</mo><mi>R</mi></math></span> in detail. We show that this spectral sequence contains the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>-comodule algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as permanent cycles, and we determine a family of differentials interpolating between <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>□</mo></mrow><mrow><mi>A</mi><msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Using this, we compute the spectral sequence completely for <span><math><mi>m</mi><mo>≤</mo><mn>3</mn></math></span>.</p><p>In the height 2 case, the Betti realization of <span><math><mi>B</mi><mi>P</mi><mi>G</mi><mi>L</mi><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span> is the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-spectrum <span><math><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>〈</mo><mn>2</mn><mo>〉</mo></math></span>, a form of which was shown by Hill and Meier to be an equivariant model for <span><math><msub><mrow><mi>tmf</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. Our spectral sequence therefore gives a computation of the comodule algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>. As a consequence, we deduce a new (2-local) Wood-type splitting<span><span><span><math><mrow><mi>tmf</mi></mrow><mo>∧</mo><mi>X</mi><mo>≃</mo><msub><mrow><mi>tmf</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span></span></span> of tmf-modules predicted by Davis and Mahowald, for <em>X</em> a certain 10-cell complex.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109955"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004705/pdfft?md5=5881a17b5ae2bf26359dfa18561bd41c&pid=1-s2.0-S0001870824004705-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004705","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a motivic spectrum ESH(k), let Γ(E) denote the global sections spectrum, where E is viewed as a sheaf of spectra on Smk. Voevodsky's slice filtration determines a spectral sequence converging to the homotopy groups of Γ(E). In this paper, we introduce a spectral sequence converging instead to the mod 2 homology of Γ(E) and study the case E=BPGLm for k=R in detail. We show that this spectral sequence contains the A-comodule algebra AA(m)F2 as permanent cycles, and we determine a family of differentials interpolating between AA(0)F2 and AA(m)F2. Using this, we compute the spectral sequence completely for m3.

In the height 2 case, the Betti realization of BPGL2 is the C2-spectrum BPR2, a form of which was shown by Hill and Meier to be an equivariant model for tmf1(3). Our spectral sequence therefore gives a computation of the comodule algebra Htmf0(3). As a consequence, we deduce a new (2-local) Wood-type splittingtmfXtmf0(3) of tmf-modules predicted by Davis and Mahowald, for X a certain 10-cell complex.

motivic 和 Real bordism 中的同调切片谱序列
对于一个动机谱 E∈SH(k),让Γ(E) 表示全局剖面谱,其中 E 被视为 Smk 上的一个谱片。Voevodsky 的切片滤波决定了收敛于 Γ(E) 同调群的谱序列。在本文中,我们引入了收敛于 Γ(E) 的 mod 2 同调的谱序列,并详细研究了 k=R 时 E=BPGL〈m〉的情况。我们证明这个谱序列包含作为永久循环的 A⁎-omodule 代数 A⁎□A(m)⁎F2,并确定了介于 A⁎□A(0)⁎F2 和 A⁎□A(m)⁎F2 之间的微分族。在高度 2 的情况下,BPGL〈2〉的贝蒂实现是 C2 谱 BPR〈2〉,希尔和迈尔证明了它的一种形式是 tmf1(3) 的等变模型。因此,我们的谱序列给出了逗点代数 H⁎tmf0(3)的计算结果。因此,我们推导出了戴维斯和马霍瓦尔德预测的 tmf 模块的新的(2-局部)伍德型分裂 tmf∧X≃tmf0(3) ,X 是某个 10 单元复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信