{"title":"Data-driven portfolio management for motion pictures industry: A new data-driven optimization methodology using a large language model as the expert","authors":"","doi":"10.1016/j.cie.2024.110574","DOIUrl":null,"url":null,"abstract":"<div><p>Portfolio management is one of the unresponded problems of the Motion Pictures Industry (MPI). To design an optimal portfolio for an MPI distributor, it is essential to predict the box office of each project. Moreover, for an accurate box office prediction, it is critical to consider the effect of the celebrities involved in each MPI project, which was impossible with any precedent expert-based method. Additionally, the asymmetric characteristic of MPI data decreases the performance of any predictive algorithm. In this paper, firstly, the fame score of the celebrities is determined using a large language model. Then, to tackle the asymmetric character of MPI’s data, projects are classified. Furthermore, the box office prediction takes place for each class of projects. Finally, using a hybrid multi-attribute decision-making technique, the preferability of each project for the distributor is calculated, and benefiting from a bi-objective optimization model, the optimal portfolio is designed. To validate our approach, we conducted experiments using a dataset of movies released in the United States from 1980 to 2020 and employed the proposed approach to predict box office performance. Our results demonstrate that the proposed methodology significantly improves prediction accuracy and provides a robust framework for effective portfolio management.</p></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224006958","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Portfolio management is one of the unresponded problems of the Motion Pictures Industry (MPI). To design an optimal portfolio for an MPI distributor, it is essential to predict the box office of each project. Moreover, for an accurate box office prediction, it is critical to consider the effect of the celebrities involved in each MPI project, which was impossible with any precedent expert-based method. Additionally, the asymmetric characteristic of MPI data decreases the performance of any predictive algorithm. In this paper, firstly, the fame score of the celebrities is determined using a large language model. Then, to tackle the asymmetric character of MPI’s data, projects are classified. Furthermore, the box office prediction takes place for each class of projects. Finally, using a hybrid multi-attribute decision-making technique, the preferability of each project for the distributor is calculated, and benefiting from a bi-objective optimization model, the optimal portfolio is designed. To validate our approach, we conducted experiments using a dataset of movies released in the United States from 1980 to 2020 and employed the proposed approach to predict box office performance. Our results demonstrate that the proposed methodology significantly improves prediction accuracy and provides a robust framework for effective portfolio management.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.